附加題.觀察計算
當(dāng)a=5,b=3時,
a+b
2
ab
的大小關(guān)系是

當(dāng)a=4,b=4時,
a+b
2
ab
的大小關(guān)系是
=
=

●探究證明
如圖所示,△ABC為圓O的內(nèi)接三角形,AB為直徑,過C作CD⊥AB于D,設(shè)AD=a,BD=b.
(1)分別用a,b表示線段OC,CD;
(2)探求OC與CD表達(dá)式之間存在的關(guān)系(用含a,b的式子表示).
●歸納結(jié)論
根據(jù)上面的觀察計算、探究證明,你能得出
a+b
2
ab
的大小關(guān)系是:
a+b
2
ab
(當(dāng)a=b時,取“=”)
a+b
2
ab
(當(dāng)a=b時,取“=”)
分析:觀察計算:將a、b的值分別代入已知代數(shù)式并求值,然后比較
a+b
2
ab
的大。
探究證明:(1)求出∠ADC=∠BDC=90°,∠CAB=∠BCD,證△ADC∽△CDB,得出
CD
DB
=
AD
CD
,代入即可求出CD,求出AB,即可求出OC;
(2)分為兩種情況:當(dāng)O和D不重合時得出
a+b
2
ab
,當(dāng)O和D重合時得出
a+b
2
=
ab
,即可得出答案
a+b
2
ab
解答:解:觀察計算:
當(dāng)a=5,b=3時,
a+b
2
=
5+3
2
=4,
ab
=
3×5
=
15

∵4>
15
,
a+b
2
ab

當(dāng)a=4,b=4時,
a+b
2
=
4+4
2
=4,
ab
=
4×4
=4,
∵4=4,
a+b
2
=
ab
;
故答案是:>,=;

●探究證明:(1)∵AB為直徑,
∴∠ACB=90°,
∵CD⊥AB,
∴∠ADC=∠BDC=90°,
∴∠CBA+∠BCD=90°,∠CBA+∠CAB=90°,
∴∠CAB=∠BCD,
∴△ADC∽△CDB,
CD
DB
=
AD
CD
,即
CD
b
=
a
CD
,CD=
ab

∵AB=AD+BD=a+b,
AB是⊙O直徑,
∴半徑OC=
1
2
AB=
a+b
2
;
即OC=
a+b
2
,CD=
ab
;

(2)∵當(dāng)D和O不重合時,如圖,在Rt△OCD中,OC>CD,即
a+b
2
ab
;
當(dāng)D和O重合時,OC=CD,即
a+b
2
=
ab

∴OC與CD表達(dá)式之間存在的數(shù)量關(guān)系是:
a+b
2
ab


●歸納結(jié)論
根據(jù)上面的觀察計算、探究證明,你能得出:
a+b
2
ab
(當(dāng)a=b時,取“=”).
點評:本題考查了勾股定理和相似三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生的理解能力和計算能力,能根據(jù)求出的結(jié)果得出規(guī)律是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

同步練習(xí)冊答案