如圖,點E是矩形ABCD的邊AD的中點,連接BE、CE.求證:△EBC是等腰三角形.

證明:∵ABCD是矩形,
∴∠A=∠D=90°,AB=CD.
∵E是AD中點,
∴AE=DE.
∴△ABE≌△DCE.
∴BE=CE.
∴△BEC是等腰三角形.
分析:要證出△BEC是等腰三角形,一般采用證邊或證角相等,由此考慮到用三角形全等進行證明.
點評:此題主要利用矩形的性質及三角形全等的判定來證明等腰三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,點E是矩形ABCD的對角線BD上的一點,且BE=BC,AB=3,BC=4,點P為直線EC上的一點,且PQ⊥BC于點Q,PR⊥BD于點R.
(1)如圖1,當點P為線段EC中點時,易證:PR+PQ=
125
(不需證明).
(2)如圖2,當點P為線段EC上的任意一點(不與點E、點C重合)時,其它條件不變,則(1)中的結論是否仍然成立?若成立,請給予證明;若不成立,請說明理由.
(3)如圖3,當點P為線段EC延長線上的任意一點時,其它條件不變,則PR與PQ之間又具有怎樣的數(shù)量關系?請直接寫出你的猜想.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖,點E是矩形ABCD中BC邊的中點,AB=6,當AE⊥DE時,矩形ABCD的周長是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點O是矩形ABCD的中心,E是AB上的點,沿CE折疊后,點B恰好與點O重合.若BC=3,則折痕CE的長為
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•寶應縣一模)如圖,點O是矩形ABCD的中心,E是AB上的點,沿CE折疊后,點B恰好與點O重合,若BC=3,求折痕CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點P是矩形ABCD對角線BD上的一個動點,AB=6,AD=8,則PA+PC的最小值為
10
10

查看答案和解析>>

同步練習冊答案