【題目】在△ABC中,AB=AC,∠BAC=60°,點(diǎn)E為直線AC上一點(diǎn),D為直線BC上的一點(diǎn),且DA=DE. 當(dāng)點(diǎn)D在線段BC上時(shí),如圖①,易證:BD+AB=AE;
當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),如圖②、圖③,猜想線段BD,AB和AE之間又有怎樣的數(shù)量關(guān)系?寫(xiě)出你的猜想,并選擇一種情況給予證明.
【答案】解;如圖②中,
結(jié)論:BD+AE=AB.
理由:作EM∥AB交BC于M,
∵△ABC是等邊三角形,
∴∠ABC=∠C=∠BAC=60°,AB=BC=AC,
∴∠CEM=∠CAB=60°,∠CME=∠CBA=60°,
∴△CME是等邊三角形,
∴CE=CM=EM,∠EMC=60°,
∴AE=BM,
∵DA=DE,
∴∠DAE=∠DEA,
∴∠BAC+∠DAB=∠C+∠EDM,
∴∠DAB=∠EDM,
∵∠ABD=180°﹣∠ABC=120°,∠EMD=180°﹣∠EMC=120°,
∴∠ABD=∠DME,
在△ABD和△DEM中,
,
∴△ABD≌△DEM,
∴DB=EM=CM,
∴DB+AE=CM+BM=BC=AB.
如圖③中,
結(jié)論:BD﹣AE=AB.
理由:作EM∥AB交BC于M,
∵△ABC是等邊三角形,
∴∠ABC=∠C=∠BAC=60°,AB=BC=AC,
∴∠CEM=∠CAB=60°,∠CME=∠CBA=60°,
∴△CME是等邊三角形,
∴CE=CM=EM,∠EMC=∠MEC=60°,
∴AE=BM,
∵DA=DE,
∴∠DAE=∠DEA,
∴∠C+∠ADC=∠MEC+∠EDDEM,
∴∠ADB=∠DEM,
∵∠ABD=180°﹣∠ABC=120°,∠EMD=180°﹣∠EMC=120°,
∴∠ABD=∠DME,
在△ABD和△DEM中,
,
∴△ABD≌△DME,
∴DB=EM=CM,
∴DB﹣AE=CM﹣BM=BC=AB.
【解析】圖②中,論:BD+AE=AB,作EM∥AB交BC于M,先證明△EMC是等邊三角形得CE=CM,AE=BM,再證明△ABD≌△DEM,得DB=EM=MC由此可以對(duì)稱(chēng)結(jié)論.圖③中,結(jié)論:BD﹣AE=AB,證明方法類(lèi)似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,10個(gè)邊長(zhǎng)為1的正方形如圖擺放在平面直角坐標(biāo)系中,經(jīng)過(guò)原點(diǎn)的一條直線l將這10個(gè)正方形分成面積相等的兩部分,則該直線l的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4cm,動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間函數(shù)關(guān)系可以用圖象表示為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將斜邊長(zhǎng)為2個(gè)等腰直角三角形按如圖所示的位置擺放,得到一條折線O﹣A﹣B﹣C﹣D…,點(diǎn)P從點(diǎn)O出發(fā)沿著折線以每秒 的速度向右運(yùn)動(dòng),2016秒時(shí),點(diǎn)P的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)展以感恩教育為主題的藝術(shù)活動(dòng),舉辦了四個(gè)項(xiàng)目的比賽,它們分別是演講、唱歌、書(shū)法、繪畫(huà).要求每位同學(xué)必須參加,且限報(bào)一項(xiàng)活動(dòng).以九年級(jí)(1)班為樣本進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪成如圖1、圖2所示的兩幅統(tǒng)計(jì)圖.請(qǐng)你結(jié)合圖示所給出的信息解答下列問(wèn)題.
(1)求出參加繪畫(huà)比賽的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比?
(2)求出扇形統(tǒng)計(jì)圖中參加書(shū)法比賽的學(xué)生所在扇形圓心角的度數(shù)?
(3)若該校九年級(jí)學(xué)生有600人,請(qǐng)你估計(jì)這次藝術(shù)活動(dòng)中,參加演講和唱歌的學(xué)生各有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于( )
A.30°
B.40°
C.50°
D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說(shuō)法錯(cuò)誤的是( )
A.函數(shù)有最小值
B.對(duì)稱(chēng)軸是直線x=
C.當(dāng)x< ,y隨x的增大而減小
D.當(dāng)﹣1<x<2時(shí),y>0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com