如圖,在△ABC中,∠ACB=90°,AC=BC=1,將△ABC繞點C逆時針方向旋轉(zhuǎn)角α(0°<α<精英家教網(wǎng)90°),得到△A1B1C1,連接BB1.設(shè)CB1交AB于點D,A1B1分別交AB、AC于點E、F.
(1)在圖中不再添加其他任何線段的情況下,請你找出圖中的所有全等三角形,并對不包括△ABC和△A1B1C1的一對全等三角形加以證明;
(2)當α=60°時,求BD的長;
(3)當△BB1D是等腰三角形時,求角α的度數(shù).
分析:(1)依據(jù)全等三角形的判定,可找出全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF等.由旋轉(zhuǎn)的意義可證∠A1CF=∠BCD,A1C=BC,∠A1=∠CBD=45°,所以△CBD≌△CA1F.
(2)作DG⊥BC于G,在直角三角形CDG和直角三角形DGB中,由三角函數(shù)即可求得BD的長.
(3)當△BBD是等腰三角形時,要分別討論B1B=B1D、BB1=BD、B1D=DB三種情況,第一,三種情況不成立,只有第二種情況成立,求得α=30°.
解答:解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF等;
以證△CBD≌△CA1F為例:
證明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°
∴∠A1CF=∠BCD
∵A1C=BC
∴∠A1=∠CBD=45°
∴△CBD≌△CA1F;
精英家教網(wǎng)
(2)作DG⊥BC于G,設(shè)CG=x.
在Rt△CDG中,∠DCG=α=60°,∴DG=xtan60°=
3
x
Rt△DGB中,∠DBG=45°,∴BG=GD=
3
x
∵AC=BC=1,∴x+
3
x=1
x=
1
1+
3
=
1
2
(
3
-1)
,∴DB=
2
BG=
3
2
-
6
2


(3)在△CBB1
∵CB=CB1
∴∠CBB1=∠CB1B=
1
2
(180°-α)
又△ABC是等腰直角三角形
∴∠ABC=45°
①若B1B=B1D,則∠B1DB=∠B1BD
∵∠B1DB=45°+α
∠B1BD=∠CBB1-45°=
1
2
(180°-α)-45°=45°-
α
2

∴45°+α=45°-
α
2
,
∴α=0°(舍去);
②∵∠BB1C=∠B1BC>∠B1BD,∴BD>B1D,即BD≠B1D;
③若BB1=BD,則∠BDB1=∠BB1D,即45°+α=
1
2
(180°-α),
解得α=30°,
由①②③可知,當△BB1D為等腰三角形時,α=30°.
點評:本題考查了旋轉(zhuǎn)的性質(zhì),解決此類問題的關(guān)鍵是正確的利用旋轉(zhuǎn)不變量.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案