【題目】如圖,在矩形ABCD中,AB<BC,E為CD邊的中點(diǎn),將△ADE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)180°,點(diǎn)D的對(duì)應(yīng)點(diǎn)為C,點(diǎn)A的對(duì)應(yīng)點(diǎn)為F,過(guò)點(diǎn)E作ME⊥AF交BC于點(diǎn)M,連接AM、BD交于點(diǎn)N,現(xiàn)有下列結(jié)論: ①AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點(diǎn)N為△ABM的外心.其中正確的個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】B
【解析】解:∵E為CD邊的中點(diǎn), ∴DE=CE,
又∵∠D=∠ECF=90°,∠AED=∠FEC,
∴△ADE≌△FCE,
∴AD=CF,AE=FE,
又∵M(jìn)E⊥AF,
∴ME垂直平分AF,
∴AM=MF=MC+CF,
∴AM=MC+AD,故①正確;
當(dāng)AB=BC時(shí),即四邊形ABCD為正方形時(shí),
設(shè)DE=EC=1,BM=a,則AB=2,BF=4,AM=FM=4﹣a,
在Rt△ABM中,22+a2=(4﹣a)2 ,
解得a=1.5,即BM=1.5,
∴由勾股定理可得AM=2.5,
∴DE+BM=2.5=AM,
又∵AB<BC,
∴AM=DE+BM不成立,故②錯(cuò)誤;
∵M(jìn)E⊥FF,EC⊥MF,
∴EC2=CM×CF,
又∵EC=DE,AD=CF,
∴DE2=ADCM,故③正確;
∵∠ABM=90°,
∴AM是△ABM的外接圓的直徑,
∵BM<AD,
∴當(dāng)BM∥AD時(shí), = <1,
∴N不是AM的中點(diǎn),
∴點(diǎn)N不是△ABM的外心,故④錯(cuò)誤.
綜上所述,正確的結(jié)論有2個(gè),
故選:B.
根據(jù)全等三角形的性質(zhì)以及線段垂直平分線的性質(zhì),即可得出AM=MC+AD;根據(jù)當(dāng)AB=BC時(shí),四邊形ABCD為正方形進(jìn)行判斷,即可得出當(dāng)AB<BC時(shí),AM=DE+BM不成立;根據(jù)ME⊥FF,EC⊥MF,運(yùn)用射影定理即可得出EC2=CM×CF,據(jù)此可得DE2=ADCM成立;根據(jù)N不是AM的中點(diǎn),可得點(diǎn)N不是△ABM的外心.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在Rt△ABC中,D是斜邊AB的中點(diǎn),AC=4,BC=2,將△ACD沿直線CD折疊,點(diǎn)A落在點(diǎn)E處,聯(lián)結(jié)AE,那么線段AE的長(zhǎng)度等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某一公路的道路維修工程,準(zhǔn)備從甲、乙兩個(gè)工程隊(duì)選一個(gè)隊(duì)單獨(dú)完成.根據(jù)兩隊(duì)每天的工程費(fèi)用和每天完成的工程量可知,若由兩隊(duì)合做此項(xiàng)維修工程,6天可以完成,共需工程費(fèi)用385200元,若單獨(dú)完成此項(xiàng)維修工程,甲隊(duì)比乙隊(duì)少用5天,每天的工程費(fèi)用甲隊(duì)比乙隊(duì)多4000元,從節(jié)省資金的角度考慮,應(yīng)該選擇哪個(gè)工程隊(duì)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,過(guò)點(diǎn)A(﹣ ,0)的兩條直線分別交y軸于B、C兩點(diǎn),且B、C兩點(diǎn)的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個(gè)根
(1)求線段BC的長(zhǎng)度;
(2)試問(wèn):直線AC與直線AB是否垂直?請(qǐng)說(shuō)明理由;
(3)若點(diǎn)D在直線AC上,且DB=DC,求點(diǎn)D的坐標(biāo);
(4)在(3)的條件下,直線BD上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫(xiě)出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰△ABC中,AC=BC,以BC為直徑的⊙O分別與AB,AC相交于點(diǎn)D,E,過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)分別延長(zhǎng)CB,F(xiàn)D,相交于點(diǎn)G,∠A=60°,⊙O的半徑為6,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】風(fēng)電已成為我國(guó)繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設(shè)你站在A處測(cè)得塔桿頂端C的仰角是55°,沿HA方向水平前進(jìn)43米到達(dá)山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達(dá)最高位置,此時(shí)測(cè)得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長(zhǎng)度為35米(塔桿與葉片連接處的長(zhǎng)度忽略不計(jì)),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點(diǎn),OA、OB分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(0,3 ),∠ABO=30°,將△ABC沿AB所在直線對(duì)折后,點(diǎn)C落在點(diǎn)D處,則點(diǎn)D的坐標(biāo)為( )
A.( , )
B.(2, )
C.( , )
D.( ,3﹣ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面三個(gè)命題: ①若 是方程組 的解,則a+b=1或a+b=0;
②函數(shù)y=﹣2x2+4x+1通過(guò)配方可化為y=﹣2(x﹣1)2+3;
③最小角等于50°的三角形是銳角三角形,
其中正確命題的序號(hào)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別為A(﹣1,3),B(﹣3,1),C(﹣1,1).請(qǐng)解答下列問(wèn)題:
(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱的△A1B1C1 , 并寫(xiě)出B1的坐標(biāo).
(2)畫(huà)出△A1B1C1繞點(diǎn)C1順時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C1 , 并求出點(diǎn)A1走過(guò)的路徑長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com