先閱讀下列解題過程,然后完成(1),(2)題.

如圖(a),已知CD∥BA,求證:∠BAE+∠DCE=∠AEC.

證明過點E作EF∥AB.所以∠BAE=∠AEF,又因為DC∥BA,所以DC∥EF,所以∠DCE=∠CEF,所以∠BAE+∠DCE=∠AEC.

(1)如圖(b),已知AB∥CD,求證:∠BAE+∠AEC+∠ECD=360°

(2)如圖(c),已知AB∥CD,求∠BAE+∠AEF+∠CFE+∠DCF的度數(shù).

答案:
解析:

  (1)方法同已給解題過程

  (2)分別過E,F(xiàn)作平行線,方法同已給解題過程


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請先閱讀下列解題過程,再解答所提的問題:
解:
a-2
a2-1
-
2
1-a
=
a-2
(a+1)(a-1)
-
2
(a-1)
…第一步
=
a-2
(a+1)(a-1)
-
2(a+1)
(a+1)(a-1)
…第二步
=a-2-2(a+1)…第三步
=-a-4…第四步
解答下列問題:
(1)上述解題過程是從哪步開始出現(xiàn)錯誤的:
 

(2)從第二步到第三步是否正確:
 
,若不正確,錯誤的原因是
 

(3)請寫出正確的解題過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下列解題過程,然后解答問題(1)、(2)、(3).
例:解絕對值方程:|2x|=1.
解:討論:①當(dāng)x≥0時,原方程可化為2x=1,它的解是x=
1
2

②當(dāng)x<0時,原方程可化為-2x=1,它的解是x=-
1
2

∴原方程的解為x=
1
2
和-
1
2

問題(1):依例題的解法,方程|
1
2
x|
=3的解是
x=6和-6
x=6和-6
;
問題(2):嘗試解絕對值方程:2|x-2|=6;
問題(3):在理解絕對值方程解法的基礎(chǔ)上,解方程:|x-2|+|x-1|=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

請先閱讀下列解題過程,再解答問題.
已知 x2+x-1=0,求x3+2x2+3的值.
解:x3+2x2+3=x3+x2-x+x2+x+3=x(x2+x-1)+x2+x-1+4=0+0+4=4.
如果1+x+x2+x3=0,求x+x2+x3+x4+x5+x6+x7+x8的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先閱讀下列解題過程,然后解答問題(1)、(2).
解方程:|3x|=1.
解:
①當(dāng)3x≥0時,原方程可化為一元一次方程為3x=1,它的解是x=
1
3

②當(dāng)3x<0時,原方程可化為一元一次方程為3x=-1,它的解是x=-
1
3

(1)請你模仿上面例題的解法,解方程:|x-1|=2.
(2)探究:求方程2|x-3|-6=0的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下列解題過程,然后解答問題(1)、(2)解方程:|3x|=1
解:①當(dāng)3x≥0時,原方程可化為一元一次方程為3x=1,它的解是x=
1
3
②當(dāng)3x<0時,原方程可化為一元一次方程為-3x=1,它的解是x=-
1
3

(1)請你模仿上面例題的解法,解方程:2|x-3|+5=13
(2)探究:當(dāng)b為何值時,方程|x-2|=b+1 ①無解;②只有一個解;③有兩個解.

查看答案和解析>>

同步練習(xí)冊答案