74、AB是⊙O直徑,BC交⊙O于D,DE⊥AC于E,要使DE與⊙O只相交于一點(diǎn),圖中的角應(yīng)滿足的條件為
∠C=∠B
.(只需填一個(gè)條件即可)
分析:DE與⊙O只相交于一點(diǎn),即DE與圓相切,D為切點(diǎn),連接AD與OD,根據(jù)切線性質(zhì)即可知角滿足的關(guān)系.
解答:解:根據(jù)題意,要使DE與⊙O只相交于一點(diǎn),
則需滿足DE與圓相切,由圖知,D為切點(diǎn);
連接AD,OD如圖,
由切線性質(zhì)知,OD⊥DE,∠EDA=∠B,
∵AB為直徑,
∴AD⊥CB,
∴∠DAB+∠B=∠CDE+∠DEA=90°,
又∵DE⊥AC,∠EDA=∠B,
∴∠C=∠B,即為角滿足關(guān)系.
點(diǎn)評(píng):本題考查了切線性質(zhì),是基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB是⊙O直徑,BC是弦,OD⊥BC于E交弧BC于D.根據(jù)中考改編
(1)請(qǐng)寫(xiě)出四個(gè)不同類型的正確結(jié)論;
(2)連接CD、DB設(shè)∠CDB=α,∠ABC=β,你認(rèn)為α=β+90°這個(gè)結(jié)論正確嗎?若正確請(qǐng)證明過(guò)程.若不正確請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O中,AB是直徑,BC是⊙O的切線,AC交⊙O于點(diǎn)E,OD⊥AC于點(diǎn)D.已知⊙O的半徑是2,BC=3,則CE=
9
5
9
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•德陽(yáng))如圖,已知AB是⊙O直徑,BC是⊙O的弦,弦ED⊥AB于點(diǎn)F,交BC于點(diǎn)G,過(guò)點(diǎn)C作⊙O的切線與ED的延長(zhǎng)線交于點(diǎn)P.
(1)求證:PC=PG;
(2)點(diǎn)C在劣弧AD上運(yùn)動(dòng)時(shí),其他條件不變,若點(diǎn)G是BC的中點(diǎn),試探究CG、BF、BO三者之間的數(shù)量關(guān)系,并寫(xiě)出證明過(guò)程;
(3)在滿足(2)的條件下,已知⊙O的半徑為5,若點(diǎn)O到BC的距離為
5
時(shí),求弦ED的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知A、B、C是圓O上的三點(diǎn),AB是直徑,BC=3,AC=4,求AB的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案