【題目】矩形ABCD中,DE平分∠ADC交BC邊于點(diǎn)E,P為DE上的一點(diǎn)(PE<PD),PM⊥PD,PM交AD邊于點(diǎn)M.
(1)若點(diǎn)F是邊CD上一點(diǎn),滿足PF⊥PN,且點(diǎn)N位于AD邊上,如圖1所示.
求證:①PN=PF;②DF+DN=DP;
(2)如圖2所示,當(dāng)點(diǎn)F在CD邊的延長(zhǎng)線上時(shí),仍然滿足PF⊥PN,此時(shí)點(diǎn)N位于DA邊的延長(zhǎng)線上,如圖2所示;試問(wèn)DF,DN,DP有怎樣的數(shù)量關(guān)系,并加以證明.
【答案】(1)證明見解析(2)
【解析】分析:(1)①利用矩形的性質(zhì),結(jié)合已知條件可證△PMN≌△PDF,則可證得結(jié)論;②由勾股定理可求得DM=DP,利用①可求得MN=DF,則可證得結(jié)論;
(2)過(guò)點(diǎn)P作PM1⊥PD,PM1交AD邊于點(diǎn)M1,則可證得△PM1N≌△PDF,則可證得M1N=DF,同(1)②的方法可證得結(jié)論.
詳解:(1)①∵四邊形ABCD是矩形,∴∠ADC=90°.
又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
∵PM⊥PD,∠DMP=45°,∴DP=MP.
∵PM⊥PD,PF⊥PN,∴∠MPN+∠NPD=∠NPD+∠DPF=90°,∴∠MPN=∠DPF.
在△PMN和△PDF中,∵ ,
∴△PMN≌△PDF(ASA),∴PN=PF,MN=DF;
②∵PM⊥PD,DP=MP,∴DM2=DP2+MP2=2DP2,∴DM=DP.
∵又∵DM=DN+MN,且由①可得MN=DF,∴DM=DN+DF,∴DF+DN=DP;
(2).理由如下:
過(guò)點(diǎn)P作PM1⊥PD,PM1交AD邊于點(diǎn)M1,如圖,
∵四邊形ABCD是矩形,∴∠ADC=90°.
又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
∵PM1⊥PD,∠DM1P=45°,∴DP=M1P,∴∠PDF=∠PM1N=135°,同(1)可知∠M1PN=∠DPF.在△PM1N和△PDF中,,
∴△PM1N≌△PDF(ASA),∴M1N=DF,由勾股定理可得:=DP2+M1P2=2DP2,∴DM1DP.
∵DM1=DN﹣M1N,M1N=DF,∴DM1=DN﹣DF,∴DN﹣DF=DP.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,菱形ABCD中,∠A=60°,點(diǎn)P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運(yùn)動(dòng)到D終止,點(diǎn)Q從A與P同時(shí)出發(fā),沿邊AD勻速運(yùn)動(dòng)到D終止,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.
(1)求點(diǎn)Q運(yùn)動(dòng)的速度;
(2)求圖2中線段FG的函數(shù)關(guān)系式;
(3)問(wèn):是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四位同學(xué)做“讀語(yǔ)句畫圖”練習(xí).甲同學(xué)讀語(yǔ)句“直線經(jīng)過(guò)A,B,C三點(diǎn),且點(diǎn)C在點(diǎn)A與點(diǎn)B之間”,畫出圖形(1);乙同學(xué)讀語(yǔ)句“兩條線段AB,CD相交于點(diǎn)P”畫出圖形(2);丙同學(xué)讀語(yǔ)句“點(diǎn)P在直線l上,點(diǎn)Q在直線l外”畫出圖形(3);丁同學(xué)讀語(yǔ)句“點(diǎn)M在線段AB的延長(zhǎng)線上,點(diǎn)N在線段AB的反向延長(zhǎng)線上”畫出圖形(4).其中畫的不正確的是( )
A. 甲同學(xué)B. 乙同學(xué)C. 丙同學(xué)D. 丁同學(xué)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校準(zhǔn)備建一條5米寬的文化長(zhǎng)廊,并按下圖方式鋪設(shè)邊長(zhǎng)為1米的正方形地磚,圖中陰影部分為彩色地磚,白色部分為普通地磚.
(1)如果長(zhǎng)廊長(zhǎng)8米,則需要彩色地磚 塊,普通地磚 塊;
(2)如果長(zhǎng)廊長(zhǎng)2a米(a為正整數(shù)),則需要彩色地磚 塊;
(3)購(gòu)買時(shí),恰逢地磚市場(chǎng)地磚促銷,彩色地磚原價(jià)為100元/塊,普通地磚原價(jià)為40元/塊,優(yōu)惠方案為:買一塊彩色地磚贈(zèng)送一塊普通地磚.
①如果長(zhǎng)廊長(zhǎng)x米(x為整數(shù)),用含x代數(shù)式表示購(gòu)買地磚所需的錢數(shù);
②當(dāng)x=51米時(shí),求購(gòu)買地磚所需錢數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有8筐楊梅,以每筐5千克為標(biāo)準(zhǔn),超過(guò)的千克數(shù)記作正數(shù),不足的千克數(shù)記作負(fù)數(shù),稱后的記錄如下:
回答下列問(wèn)題:
(1)這8筐楊梅中,最接近5千克的那筐楊梅為多少千克?
(2)以每筐5千克為標(biāo)準(zhǔn),這8筐楊梅總計(jì)超過(guò)多少千克或者不足多少千克?
(3)若楊梅每千克售價(jià)25元,則出售這8筐楊梅可賣多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2,要說(shuō)明△ABD≌△ACD,還需從下列條件中選一個(gè),錯(cuò)誤的選法是( )
A. ∠ADB=∠ADCB. ∠B=∠CC. DB=DCD. AB=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l經(jīng)過(guò)A(2,3)B(,0)
(1) 求直線l的解析式及l與坐標(biāo)軸圍成的圖形的面積.
(2) 將l向下平移3個(gè)單位長(zhǎng)度,再向左平移1個(gè)單位長(zhǎng)度,得到直線l,畫出l的圖象并直接寫出l的解析式__________________.
(3)若點(diǎn)M(,m),N(n,1)在直線l上,P為y軸上一動(dòng)點(diǎn),則PM+PN最小時(shí),P的坐標(biāo)為____________,此時(shí)PM+PN=______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,E是CD中點(diǎn),連結(jié)OE.過(guò)點(diǎn)C作CF∥BD交線段OE的延長(zhǎng)線于點(diǎn)F,連結(jié)DF.求證:
(1)△ODE≌△FCE;
(2)四邊形ODFC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】發(fā)現(xiàn)問(wèn)題、探索規(guī)律,要有一雙敏銳的雙眼,下面的圖形是由邊長(zhǎng)為1的小正方形按照某種規(guī)律排列而成的.
(1)觀察圖形,填寫下表:
圖形個(gè)數(shù)(n) | (1) | (2) | (3) |
正方形的個(gè)數(shù) | 8 |
|
|
圖形的周長(zhǎng) | 18 |
|
|
(2)推測(cè)第n個(gè)圖形中,正方形有 個(gè),周長(zhǎng)為 .
(3)寫出第30個(gè)圖形的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com