數(shù)軸上有理數(shù)a,b,c位置如圖,則a+b
0,a+c
0,b-c
0,
b
c
0,
a
b
0,b+c
0.
分析:從數(shù)軸得出c<b<0<a,|c|>|a|>|b|,根據(jù)有理數(shù)的加減、乘除法則求出a+b>0,a+c<0,b-c>0,
b
c
>0,
a
b
<0,b+c<0,即可得出答案.
解答:解:∵從數(shù)軸可知:c<b<0<a,|c|>|a|>|b|,
∴a+b>0,a+c<0,b-c>0,
b
c
>0,
a
b
<0,b+c<0,
故答案為:>,<,>,>,<,<.
點(diǎn)評:本題考查了數(shù)軸和有理數(shù)的加減、乘除法則的應(yīng)用,主要考查學(xué)生的理解能力和計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如下圖,請根據(jù)數(shù)軸上有理數(shù)a對應(yīng)的點(diǎn)判斷-a
0(填“>”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為|AB|,當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,|AB|=|OB|=|b|=|a-b|,當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí)
①如圖2,點(diǎn)A、B都在原點(diǎn)的右邊|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;
②如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=a-b=|a-b|;
③如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,|AB|=|OB|+|OA|=|a|+|b|=a+(-b)=a-b=|a-b|;
綜上,數(shù)軸上A、B兩點(diǎn)之間的距離|AB|=|a-b|
利用上述結(jié)論,請結(jié)合數(shù)軸解答下列問題:
(1)數(shù)軸上表示2和-5的兩點(diǎn)之間的距離是
7
7
,數(shù)軸上表示-1和-3的兩點(diǎn)之間的距離是
2
2

(2)若數(shù)軸上有理數(shù)x滿足|x-1|+|x+2|=5,則有理數(shù)x為
2或-3
2或-3

(2)數(shù)軸上表示a和-1的點(diǎn)的距離可表示為|a+1|,表示a和3的點(diǎn)距離表示為|a-3|,當(dāng)|a+1|+|a-3|取最小值時(shí),有理數(shù)a的范圍是
-1≤a≤3
-1≤a≤3
,最小值是
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

同學(xué)們都知道,|5-(-2)|表示5與-2之差的絕對值,實(shí)際上也可理解為5與-2兩數(shù)在數(shù)軸上所對的兩點(diǎn)之間的距離.試探索:
(1)求|5-(-2)|=
7
7

(2)同樣道理|x+5|+|x-2|表示數(shù)軸上有理數(shù)x所對點(diǎn)到-5和2所對的兩點(diǎn)距離之和,請你找出所有符合條件的整數(shù)x,使得|x+5|+|x-2|=7,這樣的整數(shù)是
-5、-4、-3、-2、-1、0、1、2
-5、-4、-3、-2、-1、0、1、2

(3)由以上探索猜想對于任何有理數(shù)x,|x-3|+|x-6|是否有最小值?如果有,寫出最小值;如果沒有,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

同學(xué)們都知道,|5-(-2)|表示5與-2之差的絕對值,實(shí)際上也可理解為5與-2兩數(shù)在數(shù)軸上所對的兩點(diǎn)之間的距離.試探索:
(1)求|5-(-2)|=______.
(2)同樣道理|x+5|+|x-2|表示數(shù)軸上有理數(shù)x所對點(diǎn)到-5和2所對的兩點(diǎn)距離之和,請你找出所有符合條件的整數(shù)x,使得|x+5|+|x-2|=7,這樣的整數(shù)是______.
(3)由以上探索猜想對于任何有理數(shù)x,|x-3|+|x-6|是否有最小值?如果有,寫出最小值;如果沒有,說明理由.

查看答案和解析>>

同步練習(xí)冊答案