如圖,我們從圖(a)中可以發(fā)現(xiàn)長(zhǎng)方形的個(gè)數(shù)取決于把AB看作寬,看AD上有多少不同的長(zhǎng),所以長(zhǎng)方形的總個(gè)數(shù)為1+2+3+4+5 = 15(個(gè)),圖(b)與圖(a)不相同,圖(b)與圖(c)也有區(qū)別,但又有相同的地方。
(1)請(qǐng)你仔細(xì)觀察,找出其中的規(guī)律,寫(xiě)出圖(b)與圖(c)中長(zhǎng)方形的總個(gè)數(shù)。
(2) 如果有類(lèi)似的一個(gè)長(zhǎng)方形,其一邊上有n個(gè)小格,另一邊上有m個(gè)小格(這些小格的長(zhǎng)度可以相等,也可以不等),那么你能算出這個(gè)長(zhǎng)方形中所有長(zhǎng)方形(包括正方形)的總個(gè)數(shù)嗎?請(qǐng)寫(xiě)出答案。
(1) 圖(b)中長(zhǎng)方形的個(gè)數(shù)為45個(gè)
圖(c)中長(zhǎng)方形的個(gè)數(shù)為90個(gè);
(2)總個(gè)數(shù)為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

17、實(shí)際問(wèn)題:某學(xué)校共有18個(gè)教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時(shí)間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來(lái)的學(xué)生中至少有10人在同一班級(jí),那么全校最少需抽取多少名學(xué)生?
建立模型:為解決上面的“實(shí)際問(wèn)題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:
在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個(gè)是同色的,則最少需摸出多少個(gè)小球?
為了找到解決問(wèn)題的辦法,我們可把上述問(wèn)題簡(jiǎn)單化:
(1)我們首先考慮最簡(jiǎn)單的情況:即要確保從口袋中摸出的小球至少有2個(gè)是同色的,則最少需摸出多少個(gè)小球?
假若從袋中隨機(jī)摸出3個(gè)小球,它們的顏色可能會(huì)出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再?gòu)拇忻?個(gè)小球就可確保至少有2個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個(gè)是同色的呢?
我們只需在(1)的基礎(chǔ)上,再?gòu)拇忻?個(gè)小球,就可確保至少有3個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個(gè)是同色的呢?
我們只需在(2)的基礎(chǔ)上,再?gòu)拇忻?個(gè)小球,就可確保至少有4個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×3=10(如圖③):…
(10)若要確保從口袋中摸出的小球至少有10個(gè)是同色的呢?
我們只需在(9)的基礎(chǔ)上,再?gòu)拇忻?個(gè)小球,就可確保至少有10個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅,黃,白,藍(lán),綠五種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是
6

(2)若要確保摸出的小球至少有10個(gè)同色,則最少需摸出小球的個(gè)數(shù)是
46
;
(3)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是
1+5(n-1)

模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是
1+m

(2)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是
1+m(n-1)

問(wèn)題解決:(1)請(qǐng)把本題中的“實(shí)際問(wèn)題”轉(zhuǎn)化為一個(gè)從口袋中摸球的數(shù)學(xué)模型;
(2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

研究課題:螞蟻怎樣爬最近?
研究方法:如圖1,正方體的棱長(zhǎng)為5cm,一只螞蟻欲從正方體底面上的點(diǎn)A沿著正方體表面爬到點(diǎn)C1處,要求該螞蟻需要爬行的最短路程的長(zhǎng),可將該正方體右側(cè)面展開(kāi),由勾股定理得最短路程的長(zhǎng)為AC1=
AC2+CC12
=
102+52
=5
5
cm.這里,我們將空間兩點(diǎn)間最短路程問(wèn)題轉(zhuǎn)化為平面內(nèi)兩點(diǎn)間距離最短問(wèn)題.
研究實(shí)踐:(1)如圖2,正四棱柱的底面邊長(zhǎng)為5cm,側(cè)棱長(zhǎng)為6cm,一只螞蟻從正四棱柱底面上的點(diǎn)A沿著棱柱表面爬到C1處,螞蟻需要爬行的最短路程的長(zhǎng)為
 

(2)如圖3,圓錐的母線(xiàn)長(zhǎng)為4cm,圓錐的側(cè)面展開(kāi)圖如圖4所示,且∠AOA1=120°,一只螞蟻欲從圓錐的底面上的點(diǎn)A出發(fā),沿圓錐側(cè)面爬行一周回到點(diǎn)A.求該螞蟻需要爬行的最短路程的長(zhǎng).
(3)如圖5,沒(méi)有上蓋的圓柱盒高為10cm,底面圓的周長(zhǎng)為32cm,點(diǎn)A距離下底面3cm.一只位于圓柱盒外表面點(diǎn)A處的螞蟻想爬到盒內(nèi)表面對(duì)側(cè)中點(diǎn)B處.請(qǐng)求出螞蟻需要爬行的最短路程的長(zhǎng).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:山東省中考真題 題型:解答題

實(shí)際問(wèn)題:
某學(xué)校共有18個(gè)教學(xué)班,每班的學(xué)生數(shù)都是40人,為了解學(xué)生課余時(shí)間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來(lái)的學(xué)生中至少有10人在同一班級(jí),那么全校最少需抽取多少名學(xué)生?
建立模型:
為解決上面的“實(shí)際問(wèn)題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:在不透明的口袋中裝有紅、黃、白三種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個(gè)是同色的,則最少需摸出多少個(gè)小球?
為了找到解決問(wèn)題的辦法,我們可把上述問(wèn)題簡(jiǎn)單化:
(1)我們首先考慮最簡(jiǎn)單的情況:即要確保從口袋中摸出的小球至少有2個(gè)是同色的,則最少需摸出多少個(gè)小球?假若從袋中隨機(jī)摸出3個(gè)小球,它們的顏色可能會(huì)出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再?gòu)拇忻?個(gè)小球就可確保至少有2個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個(gè)是同色的呢?我們只需在(1)的基礎(chǔ)上,再?gòu)拇忻?個(gè)小球,就可確保至少有3個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個(gè)是同色的呢?我們只需在(2)的基礎(chǔ)上,再?gòu)拇忻?個(gè)小球,就可確保至少有4個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×3=10(如圖③)
...
(10)若要確保從口袋中摸出的小球至少有10個(gè)是同色的呢?我們只需在(9)的基礎(chǔ)上,再?gòu)拇忻?個(gè)小球,就可確保至少有10個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:
在不透明的口袋中裝有紅、黃、白、藍(lán)、綠五種顏色的小球各20分(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是____;
(2)若要確保摸出的小球至少有10個(gè)同色,則最少需摸出小球的個(gè)數(shù)是____;
(3)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是____;
模型拓展二:
在不透明口袋中裝有m種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是____;
(2)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是____;
問(wèn)題解決:
(1)請(qǐng)把本題中的“實(shí)際問(wèn)題”轉(zhuǎn)化為一個(gè)從口袋中摸球的數(shù)學(xué)模型;
(2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:鼓樓區(qū)二模 題型:解答題

研究課題:螞蟻怎樣爬最近?
研究方法:如圖1,正方體的棱長(zhǎng)為5cm,一只螞蟻欲從正方體底面上的點(diǎn)A沿著正方體表面爬到點(diǎn)C1處,要求該螞蟻需要爬行的最短路程的長(zhǎng),可將該正方體右側(cè)面展開(kāi),由勾股定理得最短路程的長(zhǎng)為AC1=
AC2+CC12
=
102+52
=5
5
cm.這里,我們將空間兩點(diǎn)間最短路程問(wèn)題轉(zhuǎn)化為平面內(nèi)兩點(diǎn)間距離最短問(wèn)題.
研究實(shí)踐:(1)如圖2,正四棱柱的底面邊長(zhǎng)為5cm,側(cè)棱長(zhǎng)為6cm,一只螞蟻從正四棱柱底面上的點(diǎn)A沿著棱柱表面爬到C1處,螞蟻需要爬行的最短路程的長(zhǎng)為_(kāi)_____.
(2)如圖3,圓錐的母線(xiàn)長(zhǎng)為4cm,圓錐的側(cè)面展開(kāi)圖如圖4所示,且∠AOA1=120°,一只螞蟻欲從圓錐的底面上的點(diǎn)A出發(fā),沿圓錐側(cè)面爬行一周回到點(diǎn)A.求該螞蟻需要爬行的最短路程的長(zhǎng).
(3)如圖5,沒(méi)有上蓋的圓柱盒高為10cm,底面圓的周長(zhǎng)為32cm,點(diǎn)A距離下底面3cm.一只位于圓柱盒外表面點(diǎn)A處的螞蟻想爬到盒內(nèi)表面對(duì)側(cè)中點(diǎn)B處.請(qǐng)求出螞蟻需要爬行的最短路程的長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案