△ABC的三邊長分別為a,b,c,且滿足條件:a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵ ,-------------------①
∴ .----------②
∴ .---------------------------------------③
∴ △ABC為直角三角形.-------------------------- ④
上述解答過程中,第_______步開始出現(xiàn)錯誤,應改正為__________________________,
正確答案:△ABC是____________________________________.
③,,等腰三角形或直角三角形.
【解析】
試題分析:把式子a2c2-b2c2=a4-b4變形化簡后判定則可.如果三角形有兩邊的平方和等于第三邊的平方,那么這個是直角三角形判定則可.如果沒有這種關系,這個就不是直角三角形.
試題解析::∵a2c2-b2c2=a4-b4,
∴(a2c2-b2c2)-(a4-b4)=0,
∴c2(a+b)(a-b)-(a+b)(a-b)(a2+b2)=0,
∴(a+b)(a-b)(c2-a2-b2)=0,
∵a+b≠0,
∴a-b=0或c2-a2-b2=0,
所以a=b或c2=a2+b2即它是等腰三角形或直角三角形.
考點: 1.因式分解;2.等腰直角三角形的判定.
科目:初中數(shù)學 來源: 題型:
A、2cm,3cm | B、4cm,5cm | C、5cm,6cm | D、6cm,7cm |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com