【題目】解不等式組
請結(jié)合題意填空,完成本題的解答。
(I)解不等式①,得________________
(Ⅱ)解不等式②,得:_____________________
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(IV)原不等式組的解集為___________________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘時(shí)期,人們認(rèn)為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是(,稱為黃金比例),如圖,著名的“斷臂維納斯”便是如此,此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是,若某人的身材滿足上述兩個黃金比例,且頭頂至咽喉的長度為,則其升高可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊(duì)計(jì)劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊(duì)每天比乙工程隊(duì)每天多修路0.5千米,乙工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)是甲工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)的1.5倍.
(1)求甲、乙兩個工程隊(duì)每天各修路多少千米?
(2)若甲工程隊(duì)每天的修路費(fèi)用為0.5萬元,乙工程隊(duì)每天的修路費(fèi)用為0.4萬元,要使兩個工程隊(duì)修路總費(fèi)用不超過5.2萬元,甲工程隊(duì)至少修路多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD中,AC⊥BD于點(diǎn)O,AO=CO=8,BO=DO=6,點(diǎn)P為線段AC上的一個動點(diǎn)。
⑴ 填空:AD=CD=_____ .
⑵ 過點(diǎn)P分別作PM⊥AD于M點(diǎn),作PH⊥DC于H點(diǎn).連結(jié)PB,在點(diǎn)P運(yùn)動過程中,PM+PH+PB的最小值為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=9,AB=CD=15.點(diǎn)E為射線DC上的一個動點(diǎn),△ADE與△AD′E關(guān)于直線AE對稱,當(dāng)△AD′B為直角三角形時(shí),求DE的長度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長方形ABCD的邊AB在y軸正半軸上,頂點(diǎn)A的坐標(biāo)為(0,2),設(shè)頂點(diǎn)C的坐標(biāo)為(a,b).
(1)頂點(diǎn)B的坐標(biāo)為 ,頂點(diǎn)D的坐標(biāo)為 (用a或b表示);
(2)如果將一個點(diǎn)的橫坐標(biāo)作為x的值,縱坐標(biāo)作為y的值,代入方程2x+3y=12成立,就說這個點(diǎn)的坐標(biāo)是方程2x+3y=12的解.已知頂點(diǎn)B和D的坐標(biāo)都是方程2x+3y=12的解,求a,b的值;
(3)在(2)的條件下,平移長方形ABCD,使點(diǎn)B移動到點(diǎn)D,得到新的長方形EDFG,
①這次平移可以看成是先將長方形ABCD向右平移 個單位長度,再向下平移 個單位長度的兩次平移;
②若點(diǎn)P(m,n)是對角線BD上的一點(diǎn),且點(diǎn)P的坐標(biāo)是方程2x+3y=12的解,試說明平移后點(diǎn)P的對應(yīng)點(diǎn)P′的坐標(biāo)也是方程2x+3y=12的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)條件求二次函數(shù)的解析式:
(1)拋物線的頂點(diǎn)坐標(biāo)為(﹣1,﹣1),且與y軸交點(diǎn)的縱坐標(biāo)為﹣3
(2)拋物線在x軸上截得的線段長為4,且頂點(diǎn)坐標(biāo)是(3,﹣2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)求A、B兩點(diǎn)的坐標(biāo).
(2)求△AOB的面積.
(3)若點(diǎn)C在直線AB上,且S△BOC=2,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD中,E為對角線BD上一點(diǎn),過E點(diǎn)作EF⊥BD交BC于F,連接DF,G為DF中點(diǎn),連接EG,CG.
(1)求證:EG=CG;
(2)將圖①中△BEF繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,如圖②所示,取DF中點(diǎn)G,連接EG,CG.
問(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)將圖①中△BEF繞B點(diǎn)旋轉(zhuǎn)任意角度,如圖③所示,再連接相應(yīng)的線段,問(1)中的結(jié)論是否仍然成立?通過觀察你還能得出什么結(jié)論(均不要求證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com