【題目】如圖,菱形OABC的頂點A的坐標(biāo)為(3,4),頂點Cx軸的正半軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過頂點B,則反比例函數(shù)的表達(dá)式為( 。

A. y= B. y= C. y= D. y=

【答案】C

【解析】

AAM⊥x軸于M,過BBN⊥x軸于N,根據(jù)菱形性質(zhì)得出OA=BC=AB=OC,AB∥OC,OA∥BC,求出∠AOM=∠BCN,OM=3,AM=4,OC=OA=AB=BC=5,證△AOM≌△BCN,求出BN=AM=4,CN=OM=3,ON=8,求出B點的坐標(biāo),把B的坐標(biāo)代入y=kx求出k即可.

AAM⊥x軸于M,過BBN⊥x軸于N,

∠AMO=∠BNC=90°

四邊形AOCB是菱形,

∴OA=BC=AB=OC,AB∥OC,OA∥BC,

∴∠AOM=∠BCN,

∵A(3,4),

∴OM=3,AM=4,由勾股定理得:OA=5,

OC=OA=AB=BC=5,

△AOM△BCN

,

∴△AOM≌△BCN(AAS),

∴BN=AM=4,CN=OM=3,

∴ON=5+3=8,

B點的坐標(biāo)是(8,4),

B的坐標(biāo)代入y=kx得:k=32,

y=,

故答案選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點稱為整點,請你觀察圖中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3……每個正方形四條邊上的整點的個數(shù).按此規(guī)律推算出正方形A2019B2019C2019D2019四條邊上的整點共有_____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是關(guān)于的一元二次方程的兩實根,的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴(kuò)大銷售、增加盈利盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出4件,若商場平均每天盈利2100元,每件襯衫應(yīng)降價多少元?請完成下列問題:

(1)未降價之前,某商場襯衫的總盈利為    元.

(2)降價后,設(shè)某商場每件襯衫應(yīng)降價x元,則每件襯衫盈利   元,平均每天可售出   件(用含x的代數(shù)式進(jìn)行表示)

(3)請列出方程,求出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.

(1)求證:方程有兩個不相等的實數(shù)根;

(2)若方程的一個根是﹣1,求另一個根及 k 值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年本市蜜桔大豐收某水果商銷售一種蜜桔,成本價為10/千克已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克與銷售價x(元/千克之間的函數(shù)關(guān)系如圖所示

1yx之間的函數(shù)關(guān)系式;

2該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應(yīng)定為多少?

銷售利潤=銷售價成本價

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),、為常數(shù))的圖象如圖所示,下列個結(jié)論:①;;;為常數(shù),且.其中正確的結(jié)論有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)市委市政府提出的建設(shè)“綠色襄陽”的號召,我市某單位準(zhǔn)備將院內(nèi)一塊長30m,寬20m的長方形空地,建成一個矩形花園.要求在花園中修兩條縱向平行和一條橫向彎折的小道,剩余的地方種植花草,如圖所示,要使種植花草的面積為532m2,那么小道進(jìn)出口的寬度應(yīng)為多少米?(注:所有小道進(jìn)出口的寬度相等,且每段小道均為平行四邊形)

查看答案和解析>>

同步練習(xí)冊答案