如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的直線互相垂直,垂足為D,且AC平分∠DAB.
(1)求證:DC為⊙O的切線;
(2)若⊙O的半徑為3,AD=4,求AC的長.
考點:
切線的判定;相似三角形的判定與性質(zhì).
分析:
(1)連接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分線的性質(zhì)可以證明∠DAC=∠OCA,接著利用平行線的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可證明直線CD與⊙O相切于C點;
(2)連接BC,根據(jù)圓周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性質(zhì)即可解決問題.
解答:
(1)證明:連接OC
∵OA=OC
∴∠OAC=∠OCA
∵AC平分∠DAB
∴∠DAC=∠OAC
∴∠DAC=∠OCA
∴OC∥AD
∵AD⊥CD∴OC⊥CD
∴直線CD與⊙O相切于點C;
(2)解:連接BC,則∠ACB=90°.
∵∠DAC=∠OAC,∠ADC=∠ACB=90°,
∴△ADC∽△ACB,
∴,
∴AC2=AD•AB,
∵⊙O的半徑為3,AD=4,
∴AB=6,
∴AC=2.
點評:
此題主要考查了切線的性質(zhì)與判定,解題時 首先利用切線的判定證明切線,然后利用切線的想這已知條件證明三角形相似即可解決問題.
科目:初中數(shù)學 來源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應性考試數(shù)學試題 題型:013
如圖,AB為⊙O的直甲徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=
A.60°
B.65°
C.67.5°
D.75°
查看答案和解析>>
科目:初中數(shù)學 來源:2008年福建省福州一中高中招生(面向福州以外)綜合素質(zhì)測試數(shù)學試卷(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com