下列關于x的一元二次方程中,兩根之和是-2的方程是


  1. A.
    -x2-2x-3=0
  2. B.
    x2+2x+3=0
  3. C.
    x2+2x-3=0
  4. D.
    x2-2x+3=0
C
分析:先利用根的判別式得到選項A,B及D中的方程無解,不合題意,然后找出選項C中方程的二次項系數(shù),一次項系數(shù),利用根與系數(shù)的關系即可求出兩個之和,得到正確的選項為C.
解答:A、-x2-2x-3=0中,
∵a=-1,b=-2,c=-3,
∴b2-4ac=4-12=-8<0,
則此方程無解,本選項不合題意;
B、x2+2x+3=0,
∵a=1,b=2,c=3,
∴b2-4ac=4-12=-8<0,
則此方程無解,本選項不合題意;
C、x2+2x-3=0,
∵a=1,b=2,c=-3,
∴b2-4ac=4+12=16>0,即方程有兩個不相等的實數(shù)根,
設兩根分別為x1,x2,
則x1+x2=-=-2,本選項符合題意;
D、x2-2x+3=0,
∵a=1,b=-2,c=3,
∴b2-4ac=4-12=-8<0,即方程無解,本選項不合題意
故選C.
點評:此題考查了一元二次方程根與系數(shù)的關系,一元二次方程ax2+bx+c=0(a≠0)有解,即b2-4ac≥0時,設方程的兩個根分別為x1,x2,則有x1+x2=-,x1x2=
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

若x1,x2是關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,則方程的兩個根x1,x2和系數(shù)a,b,c有如下關系:x1+x2=-
b
a
x1x2=
c
a
.我們把它們稱為根與系數(shù)關系定理.
如果設二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關系定理我們又可以得到A、B兩個交點間的距離為:
AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

請你參考以上定理和結論,解答下列問題:
設二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當△ABC為等腰直角三角形時,求b2-4ac的值;
(2)當△ABC為等邊三角形時,b2-4ac=
 
;
(3)設拋物線y=x2+kx+1與x軸的兩個交點為A、B,頂點為C,且∠ACB=90°,試問如何平移此拋物線,才能使∠ACB=60°?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天津)若關于x的一元二次方程(x-2)(x-3)=m有實數(shù)根x1、x2,且x1≠x2,有下列結論:
①x1=2,x2=3;②m>-
1
4
;③二次函數(shù)y=(x-x1)(x-x2)+m的圖象與x軸交點的坐標為(2,0)和(3,0).
其中,正確結論的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源:新教材新學案數(shù)學九年級上冊 題型:044

將下列關于x的一元二次方程化成一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)及常數(shù)項.

(1)2x(x-1)=3(x+5)-4;

(2)(ax-b)2-(a-bx)2=a2+b2(a≠±b).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把下列關于x的一元二次方程化成一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)和常數(shù)項.

 (x+1)(x-1)= 3;                         

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把下列關于x的一元二次方程化成一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)和常數(shù)項.

 (x-5)2+(x-3)2=16.

查看答案和解析>>

同步練習冊答案