精英家教網(wǎng)如圖,拋物線y=x2+m與直線y=x的交點A、B的橫坐標分別是-1和2,則關(guān)于x的不等式x2+m+x<0的解集是(  )
A、-1<x<2B、x<-1或x>2C、-2<x<1D、x<-2或x>1
分析:根據(jù)軸對稱性求出y=-x與拋物線y=x2+m的交點的橫坐標,然后找出拋物線在直線y=-x下方部分的x的取值范圍即可.
解答:精英家教網(wǎng)解:∵拋物線y=x2+m與直線y=x的交點A、B的橫坐標分別是-1和2,
∴拋物線y=x2+m與直線y=-x的交點A′、B′的橫坐標分別是1和-2,
∴不等式x2+m+x<0,
即不等式x2+m<-x的解集是-2<x<1.
故選C.
點評:本題考查了二次函數(shù)與不等式的關(guān)系,根據(jù)對稱性確定出y=-x與拋物線的交點的橫坐標是解題的關(guān)鍵,作出圖形更形象直觀.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2+4x與x軸分別相交于點B、O,它的頂點為A,連接AB,AO.
(1)求點A的坐標;
(2)以點A、B、O、P為頂點構(gòu)造直角梯形,請求一個滿足條件的頂點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、如圖,拋物線y=-x2+2x+m(m<0)與x軸相交于點A(x1,0)、B(x2,0),點A在點B的左側(cè).當x=x2-2時,y
0(填“>”“=”或“<”號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,拋物線y=x2+(k2+1)x+k+1的對稱軸是直線x=-1,且頂點在x軸上方.設(shè)M是直線x=-1左側(cè)拋物線上的一動點,過點M作x軸的垂線MG,垂足為G,過點M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交于H點,若M點的橫坐標為x,矩形MNHG的周長為l.
(1)求出k的值;
(2)寫出l關(guān)于x的函數(shù)解析式;
(3)是否存在點M,使矩形MNHG的周長最小?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•揚州)如圖,拋物線y=x2-2x-8交y軸于點A,交x軸正半軸于點B.
(1)求直線AB對應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于y軸,在點A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點的橫坐標為m,且0<m<3.試比較線段MN與PQ的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2-2x-3與x軸分別交于A,B兩點.
(1)求A,B兩點的坐標;
(2)求拋物線頂點M關(guān)于x軸對稱的點M′的坐標,并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說明理由)

查看答案和解析>>

同步練習冊答案