如圖,矩形ABCD中,AB=3,BC=4,將該矩形沿對(duì)角線BD折疊,則圖中陰影部分的面積是多少?

解:∵四邊形ABCD是矩形,
∴∠A=90°,AD∥BC,AD=BC=4,
∴∠EDB=∠DBC,
由折疊的性質(zhì)可得:∠EBD=∠DBC,
∴∠EBD=∠EDB,
∴EB=ED,
設(shè)ED=EB=x,則AE=AD-ED=4-x,
在Rt△ABE中,AB2+AE2=BE2,
即32+(4-x)2=x2,
解得:x=,
即DE=
∴S陰影=S△BDE=DE•AB=××3=
答:圖中陰影部分的面積是
分析:由矩形與折疊的性質(zhì),易證得△BDE是等腰三角形,然后設(shè)ED=EB=x,在Rt△ABE中,由AB2+AE2=BE2,可得方程:32+(4-x)2=x2,解此方程即可求得DE的長(zhǎng),繼而求得陰影部分的面積.
點(diǎn)評(píng):此題考查了折疊的性質(zhì)、矩形的性質(zhì)、等腰三角形的判定與性質(zhì)以及勾股定理.此題難度適中,注意掌握折疊前后圖形的對(duì)應(yīng)關(guān)系,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點(diǎn),DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點(diǎn)P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關(guān)系式一定滿足( 。
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點(diǎn),且BE=ED,P是對(duì)角線上任意一點(diǎn),PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長(zhǎng)為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點(diǎn),且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習(xí)冊(cè)答案