已知某一次函數(shù)的圖象經(jīng)過點(0,-3),且與正比例函數(shù)y=x的圖象相交于點(2,a)。

求:(1)a的值.(2)k、b的值。(3)這兩個函數(shù)圖象與x軸所圍成的三角形面積。

(1)1;(2)k=2,b=-3;(3).

解析試題分析:(1)由題意可得:點(2,a)在正比例函數(shù)y=x的圖象上,代入即可.(2)設(shè)一次函數(shù)的解析式為y=kx+b,圖象經(jīng)過點(0, -3) ,(2,1)解得k=2,b=-3
(3)一次函數(shù)的解析式為y=2x-3,與x軸的交點A(.0),所以,=
試題解析:(1)由題意可得:點(2,a)在正比例函數(shù)y=x的圖象上,a=1
(2)設(shè)一次函數(shù)的解析式為y=kx+b,圖象經(jīng)過點(0, -3) ,(2,1)
可得:
解得:k=2,b=-3
(3)一次函數(shù)的解析式為y=2x-3,與x軸的交點A(.0),=
考點:1.一次函數(shù)的解析式.2.圖像交點問題. 3函數(shù)圖象與坐標(biāo)軸圍成的三角形的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2(k為常數(shù),且k≠0)的圖象都經(jīng)過點A(m,2).

(1)求點A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象直接比較:當(dāng)x>0時,y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

華盛印染廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品出廠價為30元,成本價為20元(不含污水處理部分費(fèi)用).在生產(chǎn)過程中,平均每生產(chǎn)1件產(chǎn)品就有0.5立方米污水排出,所以為了凈化環(huán)境,工廠設(shè)計了兩種對污水進(jìn)行處理的方案并準(zhǔn)備實施.
方案一:工廠污水先凈化處理后再排出,每處理1立方米污水所用的原料費(fèi)用為2元,并且每月排污設(shè)備損耗等其它各項開支為27000元.
方案二:將污水排放到污水處理廠統(tǒng)一處理,每處理1立方米污水需付8元排污費(fèi).
(1)若實施方案一,為了確保印染廠有利潤,則每月的產(chǎn)量應(yīng)該滿足怎樣的條件?
(2)你認(rèn)為該工廠應(yīng)如何選擇污水處理方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,四邊形OABC是矩形,點D在OC邊上,以AD為折痕,將△OAD向上翻折,點O恰好落在BC邊上的點E處,若△ECD的周長為2,△EBA的周長為6.

(1)矩形OABC的周長為          
(2)若A點坐標(biāo)為,求線段AE所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

小亮家距離學(xué)校8千米,昨天早晨,小亮騎車上學(xué)途中,自行車“爆胎”,恰好路邊有“自行車”維修部,幾分鐘后車修好了,為了不遲到,他加快了騎車到校的速度.回校后,小亮根據(jù)這段經(jīng)歷畫出如下圖象.該圖象描繪了小亮行的路程S與他所用的時間t之間的關(guān)系.請根據(jù)圖象,解答下列問題:

(1)小亮行了多少千米時,自行車“爆胎”?修車用了幾分鐘?
(2)小亮到校路上共用了多少時間?
(3)如果自行車沒有“爆胎”,一直用修車前的速度行駛,那么他比實際情況早到或晚到學(xué)校多少分鐘(精確到0.1)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(12分)汽車油箱中的余油量Q(升)是它行駛的時間(小時)的一次函數(shù).某天該汽車外出時,油箱中余油量與行駛時間的變化關(guān)系如圖:

(1)根據(jù)圖象,求油箱中的余油Q與行駛時間的函數(shù)關(guān)系.(7分)
(2)從開始算起,如果汽車每小時行駛40千米,當(dāng)油箱中余油 20升時,該汽車行駛了多少千米?(5分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,反比例函數(shù)的圖象經(jīng)過點A、B,點A的坐標(biāo)為(1,3),點B的縱坐標(biāo)為1,點C的坐標(biāo)為(2,0).

(1)求該反比例函數(shù)的解析式;
(2)求直線BC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一次函數(shù)的圖象與x軸、y軸分別相交于點A、B.P是射線BO上的一個動點(點P不與點B重合),過點P作PC⊥AB,垂足為C,在射線CA上截取CD=CP,連接PD.設(shè)BP=t.

(1)t為何值時,點D恰好與點A重合?
(2)設(shè)△PCD與△AOB重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某農(nóng)場的一個家電商場為了響應(yīng)國家家電下鄉(xiāng)的號召,準(zhǔn)備用不超過105700元購進(jìn)40臺電腦,其中A型電腦每臺進(jìn)價2500元,B型電腦每臺進(jìn)價2800元,A型每臺售價3000元,B型每臺售價3200元,預(yù)計銷售額不低于123200元.設(shè)A型電腦購進(jìn)x臺、商場的總利潤為y(元).
(1)請你設(shè)計出進(jìn)貨方案;
(2)求出總利潤y(元)與購進(jìn)A型電腦x(臺)的函數(shù)關(guān)系式,并利用關(guān)系式說明哪種方案的利潤最大,最大利潤是多少元?
(3)商場準(zhǔn)備拿出(2)中的最大利潤的一部分再次購進(jìn)A型和B型電腦至少各兩臺,另一部分為地震災(zāi)區(qū)購買單價為500元的帳篷若干頂.在錢用盡三樣都購買的前提下請直接寫出購買A型電腦、B型電腦和帳篷的方案.

查看答案和解析>>

同步練習(xí)冊答案