【題目】騰飛中學(xué)在教學(xué)樓前新建了一座“騰飛”雕塑(如圖①).為了測量雕塑的高度,小明在二樓找到一點C,利用三角板測得雕塑頂端A點的仰角為,底部B點的俯角為,小華在五樓找到一點D,利用三角板測得A點的俯角為(如圖②).若已知CD為10米,請求出雕塑AB的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù)).
【答案】
【解析】試題分析:
由題意可得:∠ADC=30°,∠ACD=60°,∠BCE=45°,∠ABE=∠BEC=90°,由此可得∠DAC=180°-30°-60°=90°,結(jié)合CD=10可得AC=5;過點A作AF⊥DE于點F,則∠AFE=90°,從而在△AFC中由∠ACD=60°可得∠CAF=30°,由此可得CF=2.5,AF=,再證四邊形ABEF是矩形可得BE=AF=,結(jié)合∠BCE=45°,∠BEC=90°可得CE=BE=,從而可得AB=EF=CF+BE=2.5+.
試題解析:
由題意可得:∠ADC=30°,∠ACD=60°,∠BCE=45°,∠ABE=∠BEC=90°,
∴在△ADC中,∠DAC=180°-30°-60°=90°,
又∵CD=10,∠D=30°,
∴AC=5,
過點AF⊥CD于點F,
∴∠AFC=90°,
∵∠ACD=60°,
∴∠CAF=30°,
∴CF=2.5,AF=AC·sin60°=,
∵∠ABE=∠BEF=∠AFE=90°,
∴四邊形ABEF是矩形,
∴BE=AF=,AB=EF,
∵在△BEC中,∠BEC=90°,∠BCE=45°,
∴CE=BE=,
∴AB=EF=CE+CF=2.5+ 6.8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D、E分別在△ABC的邊AC和BC上,∠C=90°,DE∥AB,且3DE=2AB,AE=13,BD=9,那么AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程式應(yīng)用題.
天河食品公司收購了200噸新鮮柿子,保質(zhì)期15天,該公司有兩種加工技術(shù),一種是加工為普通柿餅,另一種是加工為特級霜降柿餅,也可以不需加工直接銷售.相關(guān)信息見表:
品種 | 每天可加工數(shù)量(噸) | 每噸獲利(元) |
新鮮柿子 | 不需加工 | 1000元 |
普通柿餅 | 16噸 | 5000元 |
特級霜降柿餅 | 8噸 | 8000元 |
由于生產(chǎn)條件的限制,兩種加工方式不能同時進行,為此公司研制了兩種可行方案:
方案1:盡可能多地生產(chǎn)為特級霜降柿餅,沒來得及加工的新鮮柿子,在市場上直接銷售;
方案2:先將部分新鮮柿子加工為特級霜降柿餅,再將剩余的新鮮柿子加工為普通柿餅,恰好15天完成.
請問:哪種方案獲利更多?獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M是△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,延長BN交AC于點D,已知AB=10,BC=15,MN=3
(1)求證:BN=DN;
(2)求△ABC的周長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是矩形ABCD的一條對角線.
(1)作BD的垂直平分線EF,分別交AD,BC于點E,F,垂足為點O;(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)
(2)在(1)中,連接BE和DF,求證:四邊形DEBF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的頂點都在菱形的邊上.設(shè)AE=AH=x(0<x<1),矩形的面積為S.
(1)求S關(guān)于x的函數(shù)解析式;
(2)當EFGH是正方形時,求S的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A、B、C是數(shù)軸上三點,O為原點.點C對應(yīng)的數(shù)為6,BC=4,AB=12.
(1)求點A、B對應(yīng)的數(shù);
(2)動點P、Q分別同時從A、C出發(fā),分別以每秒6個單位和3個單位的速度沿數(shù)軸正方向運動.M為AP的中點,N在CQ上,且CN=CQ,設(shè)運動時間為t(t>0).
①求點M、N對應(yīng)的數(shù)(用含t的式子表示); ②t為何值時,OM=2BN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了發(fā)展鄉(xiāng)村旅游,建設(shè)美麗從化,某中學(xué)七年級一班同學(xué)都積極參加了植樹活動,今年四月份該班同學(xué)的植樹情況部分如圖所示,且植樹2株的人數(shù)占32%.
(1)求該班的總?cè)藬?shù)、植樹株數(shù)的眾數(shù),并把條形統(tǒng)計圖補充完整;
(2)若將該班同學(xué)的植樹人數(shù)所占比例繪制成扇形統(tǒng)計圖時,求“植樹3株”對應(yīng)扇形的圓心角的度數(shù);
(3)求從該班參加植樹的學(xué)生中任意抽取一名,其植樹株數(shù)超過該班植樹株數(shù)的平均數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com