(2013•西青區(qū)二模)將矩形紙片ABCD放在平面直角坐標(biāo)系中,點(diǎn)A在y軸正半軸上,點(diǎn)B與點(diǎn)O重合(O為原點(diǎn)),點(diǎn)C在x軸正半軸上.若將矩形紙片折疊,使B落在邊AD(含端點(diǎn))上,落點(diǎn)記為E,這時(shí)折痕與邊BC或者邊CD(含端點(diǎn))交于F,然后展開鋪平,則以B、E、F為頂點(diǎn)的△BEF稱為矩形ABCD的“折痕三角形”.
(Ⅰ)如圖(1),根據(jù)“折痕三角形”的定義請(qǐng)你判斷矩形ABCD的任意一個(gè)“折痕△BEF”的形狀(不需要證明);
(Ⅱ)如圖(2),在矩形ABCD中,AB=2,BC=4,當(dāng)它的“折痕△BEF”的頂點(diǎn)E位于AD的中點(diǎn)時(shí),畫出這個(gè)“折痕△BEF”,并求出點(diǎn)F的坐標(biāo);
(Ⅲ)如圖(3),在矩形ABCD中,AB=2,BC=4.該矩形是否存在面積最大的“折痕△BEF”?若存在,說明理由,并求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,也請(qǐng)你說明理由.
分析:(Ⅰ)由圖形結(jié)合線段垂直平分線的性質(zhì)即可解答;
(Ⅱ)由折疊性質(zhì)可知,折痕垂直平分BE,求出AB、AE的長(zhǎng),判斷出四邊形ABFE為正方形,求得F點(diǎn)坐標(biāo);
(Ⅲ)矩形ABCD存在面積最大的折痕三角形BEF,其面積為4,
①當(dāng)F在邊CD上時(shí),S△BEF
1
2
S矩形ABCD,即當(dāng)F與C重合時(shí),面積最大為4;
②當(dāng)F在邊CD上時(shí),過F作FH∥BC交AB于點(diǎn)H,交BE于K,再根據(jù)三角形的面積公式即可求解;再根據(jù)此兩種情況利用勾股定理即可求出AE的長(zhǎng),進(jìn)而求出E點(diǎn)坐標(biāo).
解答:解:(Ⅰ)任意一個(gè)“折痕△BEF”的形狀等腰三角形.

(Ⅱ)如圖①,連接BE,畫BE的中垂線交BC與點(diǎn)F,連接EF,△BEF是矩形ABCD的一個(gè)折痕三角形.
∵折痕垂直平分BE,AB=AE=2,
∴點(diǎn)A在BE的中垂線上,即折痕經(jīng)過點(diǎn)A.
∴四邊形ABFE為正方形.
∴BF=AB=2,
∴F(2,0).

(Ⅲ)矩形ABCD存在面積最大的折痕三角形BEF,其面積為4,
理由如下:①當(dāng)F在邊BC上時(shí),如圖②所示.
S△BEF
1
2
S矩形ABCD,即當(dāng)F與C重合時(shí),面積最大為4.
②當(dāng)F在邊CD上時(shí),如圖③所示,
過F作FH∥BC交AB于點(diǎn)H,交BE于K.
∵S△EKF=
1
2
KF•AH≤
1
2
HF•AH=
1
2
S矩形AHFD
S△BKF=
1
2
KF•BH≤
1
2
HF•BH=
1
2
S矩形BCFH,
∴S△BEF
1
2
S矩形ABCD=4.
即當(dāng)F為CD中點(diǎn)時(shí),△BEF面積最大為4.
下面求面積最大時(shí),點(diǎn)E的坐標(biāo).
①當(dāng)F與點(diǎn)C重合時(shí),如圖④所示.
由折疊可知CE=CB=4,
在Rt△CDE中,ED=
CE2-CD2
=
42-22
=2
3

∴AE=4-2
3

∴E(4-2
3
,2).
②當(dāng)F在邊DC的中點(diǎn)時(shí),點(diǎn)E與點(diǎn)A重合,如圖⑤所示.
此時(shí)E(0,2).
綜上所述,折痕△BEF的最大面積為4時(shí),點(diǎn)E的坐標(biāo)為E(0,2)或E(4-2
3
,2).
點(diǎn)評(píng):本題考查的是圖形的翻折變換,涉及到矩形及正方形的性質(zhì),難度較大,在解答此題時(shí)要利用數(shù)形結(jié)合的思想進(jìn)行分類討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•西青區(qū)二模)如圖,小明將一張三角形紙片(△ABC),沿著DE折疊(點(diǎn)D、E分別在邊AB、AC上),并使點(diǎn)A與點(diǎn)A′重合,若∠A=70°,則∠1+∠2的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•西青區(qū)二模)邊長(zhǎng)為1的正六邊形的內(nèi)切圓的半徑為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•西青區(qū)二模)如圖,OB、AB分別表示兩名同學(xué)沿著同一路線運(yùn)動(dòng)的一次函數(shù)圖象,圖中s和t分別表示運(yùn)動(dòng)路程和時(shí)間,已知甲的速度比乙快.有下列結(jié)論:
①射線AB表示甲的運(yùn)動(dòng)路程與時(shí)間的函數(shù)關(guān)系;
②甲出發(fā)時(shí),乙已經(jīng)在甲前面12米;
③8秒后,甲超過了乙;
④64秒時(shí),甲追上了乙.
其中,正確結(jié)論的個(gè)數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•西青區(qū)二模)不等式組
x+1
2
≤1
1-2x<4
的解集是
-
3
2
<x≤1
-
3
2
<x≤1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•西青區(qū)二模)若實(shí)數(shù)x滿足x+
1
x
=3
,則x2+
1
x2
的值=
7
7

查看答案和解析>>

同步練習(xí)冊(cè)答案