【題目】如圖,過邊長為1的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當PA=CQ時,連PQ交AC邊于D,則DE的長為(

A.
B.
C.
D.不能確定

【答案】B
【解析】解:過P作PM∥BC,交AC于M;
∵△ABC是等邊三角形,且PM∥BC,
∴△APM是等邊三角形;
又∵PE⊥AM,
∴AE=EM= AM;(等邊三角形三線合一)
∵PM∥CQ,
∴∠PMD=∠QCD,∠MPD=∠Q;
又∵PA=PM=CQ,
在△PMD和△QCD中

∴△PMD≌△QCD(AAS);
∴CD=DM= CM;
∴DE=DM+ME= (AM+MC)= AC= ,故選B.

【考點精析】通過靈活運用平行線的性質(zhì)和等邊三角形的性質(zhì),掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;等邊三角形的三個角都相等并且每個角都是60°即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程x2+x﹣2=0的兩根之積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】m是方程x2x10的一個根,則代數(shù)式m32m2+9_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在□ABCD中,E、F分別是AD、BC的中點,連接AC、CE、AF

(1)求證△ABF ≌ △CDE;

(2)若ABAC,求證四邊形AFCE是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個求助沒有用(使用求助可以讓主持人去掉其中一題的一個錯誤選項).

(1)如果小明第一題不使用求助,那么小明答對第一道題的概率是  

(2)如果小明將求助留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=60°,BD,CD分別平分∠ABC,∠ACB,M,N,Q分別在DB,DC,BC的延長線上,BE,CE分別平分∠MBC,∠BCN,BF,CF分別平分∠EBC,∠ECQ,則∠F=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( 。
A.x5+x5=x10
B.(x33=x6
C.x3x2=x5
D.x6﹣x3=x3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的材料:

如圖①,在中,試說明.

分析:通過畫平行線,將、、作等量代換,使各角之和恰為一個平角,依輔助線不同而得多種方法.

:如圖②,延長到點,過點 //.

因為//(作圖所知),

所以,(兩直線平行,同位角、內(nèi)錯角相等).

又因為(平角的定義),

所以(等量代換).

如圖③,過上任一點,作//, //,這種添加輔助線的方法能說?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:3a2·a4(a3)22a6

查看答案和解析>>

同步練習冊答案