(2012•廣州)如圖,在等邊三角形ABC中,AB=6,D是BC上一點(diǎn),且BC=3BD,△ABD繞點(diǎn)A旋轉(zhuǎn)后得到△ACE,則CE的長(zhǎng)度為
2
2
分析:由在等邊三角形ABC中,AB=6,D是BC上一點(diǎn),且BC=3BD,根據(jù)等邊三角形的性質(zhì),即可求得BD的長(zhǎng),然后由旋轉(zhuǎn)的性質(zhì),即可求得CE的長(zhǎng)度.
解答:解:∵在等邊三角形ABC中,AB=6,
∴BC=AB=6,
∵BC=3BD,
∴BD=
1
3
BC=2,
∵△ABD繞點(diǎn)A旋轉(zhuǎn)后得到△ACE,
∴△ABD≌△ACE,
∴CE=BD=2.
故答案為:2.
點(diǎn)評(píng):此題考查了旋轉(zhuǎn)的性質(zhì)與等邊三角形的性質(zhì).此題難度不大,注意旋轉(zhuǎn)中的對(duì)應(yīng)關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點(diǎn)E,且EC=3,則梯形ABCD的周長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)如圖,⊙P的圓心為P(-3,2),半徑為3,直線MN過點(diǎn)M(5,0)且平行于y軸,點(diǎn)N在點(diǎn)M的上方.
(1)在圖中作出⊙P關(guān)于y軸對(duì)稱的⊙P′.根據(jù)作圖直接寫出⊙P′與直線MN的位置關(guān)系.
(2)若點(diǎn)N在(1)中的⊙P′上,求PN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)如圖,拋物線y=-
3
8
x2-
3
4
x+3
與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求點(diǎn)A、B的坐標(biāo);
(2)設(shè)D為已知拋物線的對(duì)稱軸上的任意一點(diǎn),當(dāng)△ACD的面積等于△ACB的面積時(shí),求點(diǎn)D的坐標(biāo);
(3)若直線l過點(diǎn)E(4,0),M為直線l上的動(dòng)點(diǎn),當(dāng)以A、B、M為頂點(diǎn)所作的直角三角形有且只有三個(gè)時(shí),求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)如圖,在平行四邊形ABCD中,AB=5,BC=10,F(xiàn)為AD的中點(diǎn),CE⊥AB于E,設(shè)∠ABC=α(60°≤α<90°).
(1)當(dāng)α=60°時(shí),求CE的長(zhǎng);
(2)當(dāng)60°<α<90°時(shí),
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請(qǐng)說明理由.
②連接CF,當(dāng)CE2-CF2取最大值時(shí),求tan∠DCF的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案