如圖,拋物線y=ax2+bx(a>0)與雙曲線y=數(shù)學(xué)公式相交于點(diǎn)A,B.已知點(diǎn)B的坐標(biāo)為(-2,-2),點(diǎn)A在第一象限內(nèi),且tan∠AOx=4.過點(diǎn)A作直線AC∥x軸,交拋物線于另一點(diǎn)C.
(1)求雙曲線和拋物線的解析式;
(2)計(jì)算△ABC的面積;
(3)在拋物線上是否存在點(diǎn)D,使△ABD的面積等于△ABC的面積?若存在,請你寫出點(diǎn)D的坐標(biāo);若不存在,請你說明理由.

解:(1)把點(diǎn)B(-2,-2)的坐標(biāo),代入y=,
得:-2=,
∴k=4.
即雙曲線的解析式為:y=
設(shè)A點(diǎn)的坐標(biāo)為(m,n).
∵A點(diǎn)在雙曲線上,
∴mn=4.①
又∵tan∠AOx=4,
=4,即n=4m.②
由①②,得:m2=1,
∴m=±1.
∵A點(diǎn)在第一象限,
∴m=1,n=4,
∴A點(diǎn)的坐標(biāo)為(1,4)
把A、B點(diǎn)的坐標(biāo)代入y=ax2+bx,得:,
解得a=1,b=3.
∴拋物線的解析式為:y=x2+3x;

(2)∵AC∥x軸,
∴點(diǎn)C的縱坐標(biāo)y=4,
代入y=x2+3x,得方程x2+3x-4=0,
解得x1=-4,x2=1(舍去).
∴C點(diǎn)的坐標(biāo)為(-4,4),且AC=5,
又∵△ABC的高為6,
∴△ABC的面積=×5×6=15;

(3)存在D點(diǎn)使△ABD的面積等于△ABC的面積.
過點(diǎn)C作CD∥AB交拋物線于另一點(diǎn)D.
∵△ABD與△ABC同底等高,
∴△ABD的面積等于△ABC的面積,
因?yàn)橹本AB相應(yīng)的一次函數(shù)是:y=2x+2,且C點(diǎn)的坐標(biāo)為(-4,4),CD∥AB,
所以直線CD相應(yīng)的一次函數(shù)是:y=2x+12.
解方程組,
∴x2+3x=2x+12,
即x=3或x=-4,
當(dāng)x=3時(shí),y=18,
當(dāng)x=-4時(shí),y=4,
(不合題意,舍去),
所以點(diǎn)D的坐標(biāo)是(3,18).
分析:(1)根據(jù)已知條件可以推出A點(diǎn)的坐標(biāo),把A、B兩點(diǎn)的坐標(biāo)代入拋物線解析式和雙曲線解析式,即可得出a、b、k的值,就可以確定雙曲線和拋物線的解析式了;
(2)根據(jù)A、B拋物線解析式,可以確定C點(diǎn)的坐標(biāo),即可去頂AC和AC邊上的高的長度,就可以計(jì)算出△ABC的面積了;
(3)根據(jù)題意畫出圖形,根據(jù)A、B兩點(diǎn)坐標(biāo)出去直線AB相應(yīng)的一次函數(shù)結(jié)合C點(diǎn)的坐標(biāo),CD∥AB,得出直線CD相應(yīng)的一次函數(shù),然后結(jié)合D點(diǎn)也在拋物線上,解方程組,求D點(diǎn)坐標(biāo).
點(diǎn)評:本題是二次函數(shù)的綜合題型,其中涉及到的知識(shí)點(diǎn):根據(jù)點(diǎn)的坐標(biāo)求拋物線解析式、雙曲線解析式以及三角形的面積求法.關(guān)鍵在于根據(jù)點(diǎn)的坐標(biāo)和相關(guān)的知識(shí)點(diǎn)求拋物線解析式,雙曲線解析式和直線解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點(diǎn)P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過計(jì)算說明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點(diǎn),試問當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線上一點(diǎn)C的橫坐標(biāo)為1.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點(diǎn)C(0,-2),精英家教網(wǎng)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動(dòng)點(diǎn),N是線段OC上一動(dòng)點(diǎn),且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時(shí),求點(diǎn)M、N的坐標(biāo);
(3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)P,與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案