已知拋物線y1=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A,B(點(diǎn)A,B在原點(diǎn)O兩側(cè)),與y軸相交于點(diǎn)C,且點(diǎn)A,C在一次函數(shù)y2=x+n的圖象上,線段AB長為16,線段OC長為8,當(dāng)y1隨著x的增大而減小時,求自變量x的取值范圍.
【答案】分析:根據(jù)OC的長度確定出n的值為8或-8,然后分①n=8時求出點(diǎn)A的坐標(biāo),然后確定拋物線開口方向向下并求出點(diǎn)B的坐標(biāo),再求出拋物線的對稱軸解析式,然后根據(jù)二次函數(shù)的增減性求出x的取值范圍;②n=-8時求出點(diǎn)A的坐標(biāo),然后確定拋物線開口方向向上并求出點(diǎn)B的坐標(biāo),再求出拋物線的對稱軸解析式,然后根據(jù)二次函數(shù)的增減性求出x的取值范圍.
解答:解:根據(jù)OC長為8可得一次函數(shù)中的n的值為8或-8.
分類討論:①n=8時,易得A(-6,0)如圖1,
∵拋物線經(jīng)過點(diǎn)A、C,且與x軸交點(diǎn)A、B在原點(diǎn)的兩側(cè),
∴拋物線開口向下,則a<0,
∵AB=16,且A(-6,0),
∴B(10,0),而A、B關(guān)于對稱軸對稱,
∴對稱軸直線x==2,
要使y1隨著x的增大而減小,則a<0,
∴x>2;

(2)n=-8時,易得A(6,0),如圖2,
∵拋物線過A、C兩點(diǎn),且與x軸交點(diǎn)A,B在原點(diǎn)兩側(cè),
∴拋物線開口向上,則a>0,
∵AB=16,且A(6,0),
∴B(-10,0),而A、B關(guān)于對稱軸對稱,
∴對稱軸直線x==-2,
要使y1隨著x的增大而減小,且a>0,
∴x<-2.
點(diǎn)評:本題考查了二次函數(shù)的性質(zhì),主要利用了一次函數(shù)圖象上的點(diǎn)的坐標(biāo)特征,二次函數(shù)的增減性,難點(diǎn)在于要分情況討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知a、c為實數(shù),直線y1=(a+1)x-1,拋物線y2=x2+ax+c.
(Ⅰ)在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線與x軸的負(fù)半軸交于點(diǎn)A,與y軸的正半軸交于點(diǎn)B,若c=2,tan∠ABO=
12
,求拋物線的解析式;
(Ⅱ)若c>0,證明在實數(shù)范圍內(nèi),對于x的同一個值,直線與拋物線對應(yīng)的y1<y2均成立;
(Ⅲ)若a=-1,當(dāng)-1<x<4時,拋物線與x軸有公共點(diǎn),求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題:(1)如圖,在四個正方形拼接成的圖形中,以A1、A2、A3、…、A10這十個點(diǎn)中任意三點(diǎn)為頂點(diǎn),共能組成
 
個等腰直角三角形.
精英家教網(wǎng)
(2)已知y1=-ax2-ax+1的頂點(diǎn)P的縱坐標(biāo)為
98
,且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動點(diǎn)Q(x,0),且xA≤x≤xB,過q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D兩點(diǎn),試問當(dāng)x為何值時,線段CD有最大值,其最大值為多少?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2-ax+1,y2=ax2-ax-1(其中a為常數(shù),且a>0).
(1)請寫出三條與上述拋物線有關(guān)的不同類型的結(jié)論;
(2)當(dāng)a=
12
時,設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(M在N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(E在F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)坐標(biāo),請寫出一個你所得到的正確結(jié)論,并說明理由;
(3)設(shè)上述兩條拋物線相交于A,B兩點(diǎn),直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過A,B兩點(diǎn),l在直線l1精英家教網(wǎng),l2之間,且l與兩條拋物線分別交于C,D兩點(diǎn),求線段CD的最大值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

已知拋物線y=2x2和直線y=ax+5.

(1)求證:拋物線與直線一定有兩個不同的交點(diǎn);

(2)設(shè)A(x1,y1)、B(x2,y2)是拋物線與直線的兩個交點(diǎn),點(diǎn)P是線段AB的中點(diǎn),且點(diǎn)P的橫坐標(biāo)為,試用含a的代數(shù)式表示點(diǎn)P的縱坐標(biāo);

(3)設(shè)A,B兩點(diǎn)的距離d=·|x1-x2|,試用含a的代數(shù)式表示d.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年江西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2-ax+1,y2=ax2-ax-1(其中a為常數(shù),且a>0).
(1)請寫出三條與上述拋物線有關(guān)的不同類型的結(jié)論;
(2)當(dāng)時,設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(M在N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(E在F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)坐標(biāo),請寫出一個你所得到的正確結(jié)論,并說明理由;
(3)設(shè)上述兩條拋物線相交于A,B兩點(diǎn),直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過A,B兩點(diǎn),l在直線l1,l2之間,且l與兩條拋物線分別交于C,D兩點(diǎn),求線段CD的最大值?

查看答案和解析>>

同步練習(xí)冊答案