如圖,在△ABC的外部,分別以AB、AC為直角邊,點A為直角頂點,作等腰直角△ABD和等腰直角△ACE,CD與BE交于點P.
試證:(1)CD=BE;(2)∠BPC=90°.

證明:(1)在等腰直角△ABD和等腰直角△ACE中
AD=AB,AC=AE,∠BAD=∠EAC=90°,
∠ADB=∠ABD=45°.
∴∠BAE=∠DAC.
在△BAE和△DAC中

∴△BAE≌△DAC
∴CD=BE.

(2)由△BAE≌△DAC得到∠ABE=∠ADC.
∵∠ADB+∠ABD=90°,
∴∠ADC+∠ABD+∠BDC=90°=∠ABE+∠ABD+∠BDC,
即∠DBP+∠BDC=90°.
∴∠BPC=90°.
分析:(1)要證CD=BE,就得證CD和BE所在的兩三角形△BAE和△DAC全等,兩對應邊相等和角相等.
(2)由(1)得∠ABE=∠ADC.通過等量代換和外角的性質(zhì)得出.
點評:此題考查的知識點是全等三角形的判定和性質(zhì)的應用.關(guān)鍵是證△BAE和△DAC全等,通過等量代換和外角的性質(zhì)得出∠BPC=90°.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)(在下面的(I)(II)兩題中選做一題,若兩題都做,按第(I)題評分)
(I)如圖,在△ABC中,AB=4,BC=3,∠B=90°,點D在AB上運動,但與A、B不重合,過B、C、D三點的圓交AC于E,連接DE.
(1)設(shè)AD=x,CE=y,求y與x之間的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當AD長為關(guān)于x的方程2x2+(4m+1)x+2m=0的一個整數(shù)根時,求m的值.

(II)如圖,在直角坐標系xOy中,以點A(0,-3)為圓心作圓與x軸相切,⊙B與⊙A外切干點P,B點在x軸正半軸精英家教網(wǎng)上,過P點作兩圓的公切線DP交y軸于D,交x軸于C,
(1)設(shè)⊙A的半徑為r1,⊙B的半徑為r2,且r2=
23
r1,求公切線DP的長及直線DP的函數(shù)解析式,
(2)若⊙A的位置、大小不變,點B在X軸正半軸上移動,⊙B與⊙A始終外切.過D作⊙B的切線DE,E為切點.當DE=4時,B點在什么位置?從解答中能發(fā)現(xiàn)什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于E,交AC于F,過點O作OD⊥AC于D.下列四個結(jié)論:①∠BOC=90°+
1
2
∠A;②EF不可能是△ABC的中位線;③設(shè)OD=m,AE+AF=n,則S△AEF=mn;④以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切.其中正確結(jié)論的個數(shù)是(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,BC=12,AB=10,sinB=
3
5
,動點D從點A出發(fā),以每秒1個單位的速度沿線段AB向點B 運動,DE∥BC,交AC于點E,以DE為邊,在點A的異側(cè)作正方形DEFG.設(shè)運動時間為t,
(1)t為何值時,正方形DEFG的邊GF在BC上;
(2)當GF運動到△ABC外時,EF、DG分別與BC交于點P、Q,是否存在時刻t,使得△CEP與△BDQ的面積之和等于△ABC面積的
1
4
?
(3)設(shè)△ABC與正方形DEFG重疊部分的面積為S,試求S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC,∠BAC=30°,分別以AB、AC為邊向形外作兩個等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.
(1)求∠DBC的度數(shù);
(2)求證:BD=CE;
(3)若連接BE、CD,試判斷BE、CD是否相等,并對結(jié)論給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,自△ABC的外接圓弧BC上的任一點M,作MD⊥BC于D,P是AM上一點,作PE⊥AC,PF⊥AB,PG⊥BC,E,F(xiàn),G分別在AC,AB,AD上.證明:E,F(xiàn),G三點共線.

查看答案和解析>>

同步練習冊答案