【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=﹣ax+b的圖象與反比例函數(shù)y= 的圖象相交于點A(﹣4,﹣2),B(m,4),與y軸相交于點C.
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)求點C的坐標及△AOB的面積.

【答案】
(1)解:∵點A(﹣4,﹣2)在反比例函數(shù)y= 的圖象上,

∴k=﹣4×(﹣2)=8,

∴反比例函數(shù)的表達式為y=

∵點B(m,4)在反比例函數(shù)y= 的圖象上,

∴4m=8,解得:m=2,

∴點B(2,4).

將點A(﹣4,﹣2)、B(2,4)代入y=﹣ax+b中,

得: ,解得: ,

∴一次函數(shù)的表達式為y=x+2


(2)解:令y=x+2中x=0,則y=2,

∴點C的坐標為(0,2).

∴SAOB= OC×(xB﹣xA)= ×2×[2﹣(﹣4)]=6.


【解析】(1)由點A的坐標利用反比例函數(shù)圖象上點的坐標特征即可求出k值,從而得出反比例函數(shù)表達式,再由點B的坐標和反比例函數(shù)表達式即可求出m值,結(jié)合點A、B的坐標利用待定系數(shù)法即可求出一次函數(shù)表達式;(2)令一次函數(shù)表達式中x=0求出y值即可得出點C的坐標,利用分解圖形求面積法結(jié)合點A、B的坐標即可得出結(jié)論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是(
A. ??
B. ??
C.π﹣ ??
D.π﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位運動員在一段2000米長的筆直公路上進行跑步比賽,比賽開始時甲在起點,乙在甲的前面200米,他們同時同向出發(fā)勻速前進,甲的速度是8米/秒,乙的速度是6米/秒,先到終點者在終點原地等待.設甲、乙兩人之間的距離是y米,比賽時間是x秒,當兩人都到達終點計時結(jié)束,整個過程中y與之間的函數(shù)圖象是(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗室里,水平桌面上有甲、乙、丙三個圓柱形容器(容器足夠高),底面半徑之比為121,用兩個相同的管子在容器的5 cm高度處連通(即管子底離容器底5 cm),現(xiàn)三個容器中,只有甲中有水,水位高1 cm,如圖所示.若每分鐘同時向乙和丙注入相同量的水開始注水1分鐘,乙的水位上升cm.

(1)開始注水1分鐘丙的水位上升________cm;

(2)開始注入________分鐘的水量后,乙的水位比甲高0.5 cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校在落實國家“營養(yǎng)餐”工程中,選用了A,B,C,D種不同類型的套餐.實行一段時間后,學校決定在全校范圍內(nèi)隨機抽取部分學生對“你喜歡的套餐類型(必選且只選一種)”進行問卷調(diào)查,將調(diào)查情況整理后,繪制成如圖所示的兩個統(tǒng)計圖.
請你根據(jù)以上信息解答下列問題:
(1)在這次調(diào)查中,一共抽取了名學生;
(2)請補全條形統(tǒng)計圖;
(3)如果全校有1200名學生,請你估計其中喜歡D套餐的學生的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,頂點為M的拋物線y=a(x+1)2﹣4分別與x軸相交于點A,B(點A在點B的右側(cè)),與y軸相交于點C(0,﹣3).

(1)求拋物線的函數(shù)表達式;
(2)判斷△BCM是否為直角三角形,并說明理由.
(3)拋物線上是否存在點N(點N與點M不重合),使得以點A,B,C,N為頂點的四邊形的面積與四邊形ABMC的面積相等?若存在,求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,1=2,DB=DC.

(1)求證:ABD≌△EDC;

(2)若∠A=135°,BDC=30°,求∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個直角∠AOB,∠COD有相同的頂點O,下列結(jié)論:①∠AOC=∠BOD;

∠AOC∠BOD=90°;③若OC平分∠AOB,則OB平分∠COD;④∠AOD的平分線與∠COB的平分線是同一條射線. 其中正確的個數(shù)有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標為(4,0).

(1)求該拋物線的解析式;
(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標;
(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;
(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案