A
分析:根據(jù)正方形的性質可得AB=AE,AC=AG,∠BAE=∠CAG=90°,然后求出∠CAE=∠BAG,再利用“邊角邊”證明△ABG和△AEC全等,根據(jù)全等三角形對應邊相等可得BG=CE,判定①正確;設BG、CE相交于點N,根據(jù)全等三角形對應角相等可得∠ACE=∠AGB,然后求出∠CNG=90°,根據(jù)垂直的定義可得BG⊥CE,判定②正確;過點E作EP⊥HA的延長線于P,過點G作GQ⊥AM于Q,根據(jù)同角的余角相等求出∠ABH=∠EAP,再利用“角角邊”證明△ABH和△EAP全等,根據(jù)全等三角形對應角相等可得∠EAM=∠ABC判定④正確,全等三角形對應邊相等可得EP=AH,同理可證GQ=AH,從而得到EP=GQ,再利用“角角邊”證明△EPM和△GQM全等,根據(jù)全等三角形對應邊相等可得EM=GM,從而得到AM是△AEG的中線.
解答:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,
∴∠BAE+∠BAC=∠CAG+∠BAC,
即∠CAE=∠BAG,
∵在△ABG和△AEC中,
,
∴△ABG≌△AEC(SAS),
∴BG=CE,故①正確;
設BG、CE相交于點N,
∵△ABG≌△AEC,
∴∠ACE=∠AGB,
∵∠NCF+∠NGF=∠ACF+∠AGF=90°+90°=180°,
∴∠CNG=360°-(∠NCF+∠NGF+∠F)=360°-(180°+90°)=90°,
∴BG⊥CE,故②正確;
過點E作EP⊥HA的延長線于P,過點G作GQ⊥AM于Q,
∵AH⊥BC,
∴∠ABH+∠BAH=90°,
∵∠BAE=90°,
∴∠EAP+∠BAH=180°-90°=90°,
∴∠ABH=∠EAP,
∵在△ABH和△EAP中,
,
∴△ABH≌△EAP(AAS),
∴∠EAM=∠ABC,故④正確,
EP=AH,
同理可得GQ=AH,
∴EP=GQ,
∵在△EPM和△GQM中,
,
∴△EPM≌△GQM(AAS),
∴EM=GM,
∴AM是△AEG的中線,故③正確.
綜上所述,①②③④結論都正確.
故選A.
點評:本題考查了正方形的性質的運用,全等三角形的判定及性質的運用,在解答時作輔助線EP⊥HA的延長線于P,過點G作GQ⊥AM于Q構造出全等三角形是難點,運用全等三角形的性質是關鍵.