在銳角三角形ABC中,AH是BC邊上的高,分別以AB、AC為一邊,向外作正方形ABDE和ACFG,連接CE、BG和EG,EG與HA的延長線交于點M,下列結論:①BG=CE ②BG⊥CE ③AM是△AEG的中線 ④∠EAM=∠ABC,其中正確結論的個數(shù)是


  1. A.
    4個
  2. B.
    3個
  3. C.
    2個
  4. D.
    1個
A
分析:根據(jù)正方形的性質可得AB=AE,AC=AG,∠BAE=∠CAG=90°,然后求出∠CAE=∠BAG,再利用“邊角邊”證明△ABG和△AEC全等,根據(jù)全等三角形對應邊相等可得BG=CE,判定①正確;設BG、CE相交于點N,根據(jù)全等三角形對應角相等可得∠ACE=∠AGB,然后求出∠CNG=90°,根據(jù)垂直的定義可得BG⊥CE,判定②正確;過點E作EP⊥HA的延長線于P,過點G作GQ⊥AM于Q,根據(jù)同角的余角相等求出∠ABH=∠EAP,再利用“角角邊”證明△ABH和△EAP全等,根據(jù)全等三角形對應角相等可得∠EAM=∠ABC判定④正確,全等三角形對應邊相等可得EP=AH,同理可證GQ=AH,從而得到EP=GQ,再利用“角角邊”證明△EPM和△GQM全等,根據(jù)全等三角形對應邊相等可得EM=GM,從而得到AM是△AEG的中線.
解答:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,
∴∠BAE+∠BAC=∠CAG+∠BAC,
即∠CAE=∠BAG,
∵在△ABG和△AEC中,
,
∴△ABG≌△AEC(SAS),
∴BG=CE,故①正確;
設BG、CE相交于點N,
∵△ABG≌△AEC,
∴∠ACE=∠AGB,
∵∠NCF+∠NGF=∠ACF+∠AGF=90°+90°=180°,
∴∠CNG=360°-(∠NCF+∠NGF+∠F)=360°-(180°+90°)=90°,
∴BG⊥CE,故②正確;
過點E作EP⊥HA的延長線于P,過點G作GQ⊥AM于Q,
∵AH⊥BC,
∴∠ABH+∠BAH=90°,
∵∠BAE=90°,
∴∠EAP+∠BAH=180°-90°=90°,
∴∠ABH=∠EAP,
∵在△ABH和△EAP中,
,
∴△ABH≌△EAP(AAS),
∴∠EAM=∠ABC,故④正確,
EP=AH,
同理可得GQ=AH,
∴EP=GQ,
∵在△EPM和△GQM中,
,
∴△EPM≌△GQM(AAS),
∴EM=GM,
∴AM是△AEG的中線,故③正確.
綜上所述,①②③④結論都正確.
故選A.
點評:本題考查了正方形的性質的運用,全等三角形的判定及性質的運用,在解答時作輔助線EP⊥HA的延長線于P,過點G作GQ⊥AM于Q構造出全等三角形是難點,運用全等三角形的性質是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、在銳角三角形ABC中,∠A=50°,AB>BC,則∠B的取值范圍是
40°<∠B<80°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在銳角三角形ABC中,a=1,b=3,那么第三邊c的變化范圍是(  )
A、2<c<4
B、2<c<3
C、2<c<
10
D、2
2
<c<
10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在銳角三角形ABC中,AD,BE分別在邊BC,AC上的高.求證:△ACD∽△BCE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在銳角三角形ABC中,∠B=60°,AD⊥BC于D,AD=3,AC=5,則AB=
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在銳角三角形ABC中,2∠B=∠C,則AB與2AC的大小關系為( 。

查看答案和解析>>

同步練習冊答案