觀察下列等式:1×
1
2
=1-
1
2
,2×
2
3
=2-
2
3
,3×
3
4
=3-
3
4
,…那么根據(jù)以上規(guī)律可知第n(n為整數(shù))等式為
n
n+1
=n-
n
n+1
(n為正整數(shù))
n
n+1
=n-
n
n+1
(n為正整數(shù))
分析:通過觀察1×
1
2
=1-
1
2
,2×
2
3
=2-
2
3
,3×
3
4
=3-
3
4
,可以得到這些等式都是兩個數(shù)的積等于這兩個數(shù)的差,而這兩個數(shù)中一個數(shù)為正整數(shù),另一個數(shù)為分?jǐn)?shù)(其分子等于前面的正整數(shù),分母比分子大1),則第n(n為正整數(shù))等式為為n×
n
n+1
=n-
n
n+1
(n為正整數(shù)).
解答:解:∵1×
1
2
=1-
1
2

2
3
=2-
2
3
,
3
4
=3-
3
4
,
…,
所以n×
n
n+1
=n-
n
n+1
(n為正整數(shù)).
故答案為n×
n
n+1
=n-
n
n+1
(n為正整數(shù)).
點評:本題考查了規(guī)律型:數(shù)字的變化類:通過從一些特殊的數(shù)字變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列等式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,
1
n(n+1)
=
1
n
-
1
n+1

將以上等式相加得到
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=1-
1
n+1

用上述方法計算:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
其結(jié)果為( 。
A、
50
101
B、
49
101
C、
100
101
D、
99
101

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、觀察下列等式:2=2=1×2;2+4=6=2×3;2+4+6=12=3×4;2+4+6+8=20=4×5;…
(1)可以猜想,從2開始到第n(n為自然數(shù))個連續(xù)偶數(shù)的和是
n(n+1)
;
(2)當(dāng)n=10時,從2開始到第10個連續(xù)偶數(shù)的和是
110

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列等式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,…用自然數(shù)n將上面式子的一般規(guī)律表示為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列等式,找出規(guī)律然后空格處填上具體的數(shù)字.1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,1+3+5+7+9+11=
 

(1)第5個式子等號右邊應(yīng)填的數(shù)是
 

(2)根據(jù)規(guī)律填空1+3+5+7+9+…+99=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列等式:
1=12
1+3=22
1+3+5=32
1+3+5+7=42

則1+3+5+…+15=
8
8
2
并請你將想到的規(guī)律用含有n(n是正整數(shù))的等式來表示就是:
1+3+5+7+…+(2n-1)=n2
1+3+5+7+…+(2n-1)=n2

查看答案和解析>>

同步練習(xí)冊答案