作業(yè)寶如圖:正方形ABCD中,△ADE旋轉(zhuǎn)一定的角度后得到△ABF,AB=5,DE=2,
(1)指出旋轉(zhuǎn)中心、和旋轉(zhuǎn)角度;
(2)求EF的長度.

解:(1)旋轉(zhuǎn)中心為點A;
∵AB與AD為對應(yīng)邊,
∴∠BAD等于旋轉(zhuǎn)角,
∴旋轉(zhuǎn)角度是90°;

(2)如圖,
在Rt△ADE中,AE===,
∵ADE旋轉(zhuǎn)后能與△ABF重合.
∴∠FAE=∠BAD=90°,AE=AF,
∴EF=AE=×=
分析:(1)由△ADE旋轉(zhuǎn)后能與△ABF重合,得到旋轉(zhuǎn)中心為點A,根據(jù)正方形的性質(zhì)得AB=AD,即AB與AD為對應(yīng)邊,則∠BAD等于旋轉(zhuǎn)角,即可得到旋轉(zhuǎn)角的度數(shù);
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到△AEF為等腰直角三角形,則EF=AE,再根據(jù)勾股定理計算出AE,即可得到EF的長.
點評:此題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心的連線段所夾的角相等,都等于旋轉(zhuǎn)角.也考查了正方形的性質(zhì)以及等腰直角三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案