(2012•遼陽(yáng))如圖,拋物線y=ax2+bx-3交y軸于點(diǎn)C,直線l為拋物線的對(duì)稱(chēng)軸,點(diǎn)P在第三象限且為拋物線的頂點(diǎn).P到x軸的距離為
10
3
,到y(tǒng)軸的距離為1.點(diǎn)C關(guān)于直線l的對(duì)稱(chēng)點(diǎn)為A,連接AC交直線l于B.
(1)求拋物線的表達(dá)式;
(2)直線y=
3
4
x+m與拋物線在第一象限內(nèi)交于點(diǎn)D,與y軸交于點(diǎn)F,連接BD交y軸于點(diǎn)E,且DE:BE=4:1.求直線y=
3
4
x+m的表達(dá)式;
(3)若N為平面直角坐標(biāo)系內(nèi)的點(diǎn),在直線y=
3
4
x+m上是否存在點(diǎn)M,使得以點(diǎn)O、F、M、N為頂點(diǎn)的四邊形是菱形?若存在,直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)已知點(diǎn)P到坐標(biāo)軸的距離以及點(diǎn)P所在的象限,先確定點(diǎn)P的坐標(biāo);而點(diǎn)A、C關(guān)于拋物線對(duì)稱(chēng)軸對(duì)稱(chēng),先求出點(diǎn)A的坐標(biāo),再由點(diǎn)A、P、C以及待定系數(shù)法確定二次函數(shù)的解析式.
(2)過(guò)點(diǎn)D作y軸的垂線,通過(guò)構(gòu)建的相似三角形先求出點(diǎn)D的橫坐標(biāo),代入拋物線的解析式中能確定點(diǎn)D的坐標(biāo);再由待定系數(shù)法求直線DF的解析式.
(3)由(2)的結(jié)論可先求出點(diǎn)F的坐標(biāo),先設(shè)出點(diǎn)M的坐標(biāo),則OF、OM、FM的表達(dá)式可求,若以O(shè)、F、M、N為頂點(diǎn)的四邊形為菱形,那么可分兩種情況:
①以O(shè)F為對(duì)角線,那么點(diǎn)M必為線段OF的中垂線與直線DF的交點(diǎn),此時(shí)點(diǎn)M的縱坐標(biāo)為點(diǎn)F縱坐標(biāo)的一半,代入直線DF的解析式后可得點(diǎn)M的坐標(biāo);
②以O(shè)F為邊,那么由OF=OM或FM=OF列出等式可求出點(diǎn)M的坐標(biāo).
解答:解:(1)∵拋物線y=ax2+bx-3交y軸于點(diǎn)C
∴C(0,-3)則 OC=3;
∵P到x軸的距離為
10
3
,P到y(tǒng)軸的距離是1,且在第三象限,
∴P(-1,-
10
3
);
∵C關(guān)于直線l的對(duì)稱(chēng)點(diǎn)為A
∴A(-2,-3);
將點(diǎn)A(-2,-3),P(-1,-
10
3
)代入拋物線y=ax2+bx-3中,有:
4a-2b-3=-3
a-b-3=-
10
3
,解得
a=
1
3
b=
2
3

∴拋物線的表達(dá)式為y=
1
3
x2+
2
3
x-3.

(2)過(guò)點(diǎn)D做DG⊥y 軸于G,則∠DGE=∠BCE=90°
∵∠DEG=∠BEC
∴△DEG∽△BEC
∵DE:BE=4:1,
∴DG:BC=4:1;
已知BC=1,則DG=4,點(diǎn)D的橫坐標(biāo)為4;
將x=4代入y=
1
3
x2+
2
3
x-3中,得y=5,則 D(4,5).
∵直線y=
3
4
x+m過(guò)點(diǎn)D(4,5)
∴5=
3
4
×4+m,則 m=2;
∴所求直線的表達(dá)式y(tǒng)=
3
4
x+2.

(3)由(2)的直線解析式知:F(0,2),OF=2;
設(shè)點(diǎn)M(x,
3
4
x+2),則:OM2=
25
16
x2+3x+4、FM2=
25
16
x2;
(Ⅰ)當(dāng)OF為菱形的對(duì)角線時(shí),點(diǎn)M在線段OF的中垂線上,則點(diǎn)M的縱坐標(biāo)為1;
3
4
x+2=1,x=-
4
3
;即點(diǎn)M的坐標(biāo)(-
4
3
,1).
(Ⅱ)當(dāng)OF為菱形的邊時(shí),有:
①FM=OF=2,則:
25
16
x2=4,x1=
8
5
、x2=-
8
5

代入y=
3
4
x+2中,得:y1=
16
5
、y2=
4
5
;
即點(diǎn)M的坐標(biāo)(
8
5
,
16
5
)或(-
8
5
4
5
);
②OM=OF=2,則:
25
16
x2+3x+4=4,x1=0(舍)、x2=-
48
25

代入y=
3
4
x+2中,得:y=
14
25

即點(diǎn)M的坐標(biāo)(-
48
25
,
14
25
);
綜上,存在符合條件的點(diǎn)M,且坐標(biāo)為(-
4
3
,1)、(
8
5
,
16
5
)、(-
8
5
,
4
5
)、(-
48
25
,
14
25
).
點(diǎn)評(píng):此題主要考查的知識(shí)點(diǎn)有:利用待定系數(shù)法確定函數(shù)解析式、菱形的判定和性質(zhì)以及相似三角形的判定和性質(zhì)等.最后一題容易漏解,一定要根據(jù)菱形頂點(diǎn)排列順序的不同進(jìn)行分類(lèi)討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•遼陽(yáng))如圖,在△ABC中,AB=AC,AB+BC=8.將△ABC折疊,使得點(diǎn)A落在點(diǎn)B處,折痕DF分別與AB、AC交于點(diǎn)D、F,連接BF,則△BCF的周長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•遼陽(yáng))如圖,反比例函數(shù)y=
k
x
(k≠0)與一次函數(shù)y=kx+k(k≠0)在同一平面直角坐標(biāo)系內(nèi)的圖象可能是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•遼陽(yáng))如圖,∠PAC=30°,在射線AC上順次截取AD=3cm,DB=10cm,以DB為直徑作⊙O交射線AP于E、F兩點(diǎn),則線段EF的長(zhǎng)是
6
6
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•遼陽(yáng))如圖所示,圖中的小方格都是邊長(zhǎng)為1的正方形,△ABC與△A′B′C′是以點(diǎn)O為位似中心的位似圖形,它們的頂點(diǎn)都在小正方形的頂點(diǎn)上.
(1)畫(huà)出位似中心點(diǎn)O;
(2)直接寫(xiě)出△ABC與△A′B′C′的位似比;
(3)以位似中心O為坐標(biāo)原點(diǎn),以格線所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,畫(huà)出△A′B′C′關(guān)于點(diǎn)O中心對(duì)稱(chēng)的△A″B″C″,并直接寫(xiě)出△A″B″C″各頂點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案