如圖,在△ABC中,∠ACB=90°,AC=BC.直線l經(jīng)過點C且繞點C轉(zhuǎn)動,分別過點A、B向直線DE引垂線,垂足分別為點D、E.
求證:AD+BE=DE.

證明:∵AD⊥DE,BE⊥DE,∠ACB=90°,
∴∠ADC=∠ACB=∠BEC=90°,
∴∠DAC+∠DCA=90°,
∠DCA+∠ECB=180°-90°=90°,
∴∠DAC=∠ECB,
在△ADC和△CEB中
,
∴△ADC≌△CEB,
∴AD=CE,DC=BE,
∴DE=DC+CE=BE+AD,
即AD+BE=DE.
分析:根據(jù)垂直得出∠ADC=∠ACB=∠BEC=90°,根據(jù)三角形的內(nèi)角和定理和鄰補角得出∠DAC=∠ECB,根據(jù)AAS證△ADC≌△CEB,推出AD=CE,DC=BE,代入即可.
點評:本題考查了鄰補角,垂線,全等三角形的性質(zhì)和判定,等腰直角三角形,三角形的內(nèi)角和定理等知識點的運用,主要考查學(xué)生綜合運用性質(zhì)進(jìn)行推理的能力,題型較好,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案