【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為(4,),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).

(1)求拋物線的解析式及A,B兩點的坐標;

(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最?若存在,求AP+CP的最小值,若不存在,請說明理由;

(3)在以AB為直徑的M相切于點E,CE交x軸于點D,求直線CE的解析式.

【答案】解:(1)由題意,設拋物線的解析式為(a≠0)

拋物線經(jīng)過(0,2),解得:

拋物線的解析式為,即:

令y=0時,,解得:x=2或x=6。

A(2,0),B(6,0)。

(2)存在

如圖1,由(1)知:拋物線的對稱軸l為x=4,

因為A、B兩點關于l對稱,連接CB交l于點P,則AP=BP,所以AP+CP=BC的值最小。

B(6,0),C(0,2)OB=6,OC=2BC=2。

AP+CP=BC=2。

AP+CP的最小值為2。

(3)如圖2,連接ME

CE是M的切線,MECE,CEM=90°。

由題意,得OC=ME=2,ODC=MDE,

COD與MED中,,

∴△COD≌△MED(AAS)。OD=DE,DC=DM。

設OD=x則CD=DM=OM﹣OD=4﹣x,

RtCOD中,OD2+OC2=CD2,,解得x=。

D(,0)。

設直線CE的解析式為y=kx+b,

直線CE過C(0,2),D(,0)兩點,

解得:。

直線CE的解析式為。

【解析】

試題(1)利用頂點式求得二次函數(shù)的解析式后令其等于0后求得x的值即為與x軸交點坐標的橫坐標。

(2)根據(jù)軸對稱的性質(zhì),線段BC的長即為AP+CP的最小值。

(3)連接ME,根據(jù)CE是M的切線得到MECE,CEM=90°,從而證得COD≌△MED,設OD=x,在RtCOD中,利用勾股定理求得x的值即可求得點D的坐標,然后利用待定系數(shù)法確定線段CE的解析式即可。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,CEBDE,CF平分∠DCEDB交于點F

1)求證:BFBC;

2)若AB4cm,AD3cm,求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點D、E分別是邊AB、AC的中點,延長DEF,使得AFCD,連接BF、CF

1)求證:四邊形AFCD是菱形;

2)當AC4,BC3時,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小王在長江邊某瞭望臺D處測得江面上的漁船A的俯角為40°,若DE3米,CE2米,CE平行于江面AB,迎水坡BC的坡度i10.75,坡長BC10米,則此時AB的長約為多少米?(結(jié)果精確到0.1,參考數(shù)據(jù):sin40°≈0.64cos40°≈0.77,tan40°≈0.84

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年以來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為了調(diào)查學生對霧霾天氣知識的了解程度,某校在學生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個等級:A.非常了解;B.比較了解;C.基本了解;D.不了解.根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的三種統(tǒng)計圖表.

對霧霾了解程度的統(tǒng)計表:

對霧霾的了解程度

百分比

A.非常了解

5%

B.比較了解

m

C.基本了解

45%

D.不了解

n

請結(jié)合統(tǒng)計圖表,回答下列問題.

(1)本次參與調(diào)查的學生共有   人,m=   ,n=   ;

(2)圖2所示的扇形統(tǒng)計圖中D部分扇形所對應的圓心角是   度;

(3)請補全條形統(tǒng)計圖;

(4)根據(jù)調(diào)查結(jié)果,學校準備開展關于霧霾知識競賽,某班要從“非常了解”態(tài)度的小明和小剛中選一人參加,現(xiàn)設計了如下游戲來確定,具體規(guī)則是:把四個完全相同的乒乓球標上數(shù)字1,2,3,4,然后放到一個不透明的袋中,一個人先從袋中隨機摸出一個球,另一人再從剩下的三個球中隨機摸出一個球.若摸出的兩個球上的數(shù)字和為奇數(shù),則小明去;否則小剛?cè)ィ堄脴錉顖D或列表法說明這個游戲規(guī)則是否公平.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6個型號):

根據(jù)以上信息,解答下列問題:

1)該班共有   名學生;

2)補全條形統(tǒng)計圖;

3)該班學生所穿校服型號的眾數(shù)為   ,中位數(shù)為   ;

4)如果該校預計招收新生1500名,根據(jù)樣本數(shù)據(jù),估計新生穿170型校服的學生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+ca≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為﹣3和1;④a﹣2b+c>0,其中正確的命題是( )

A. ①②③B. ①③C. ①④D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直徑為13的⊙E,經(jīng)過原點O,并且與x軸、y軸分別交于AB兩點,線段OAOB(OAOB)的長分別是方程x2+kx+600的兩根.

(1)OAOB____;

(2)若點C在劣弧OA上,連結(jié)BCOAD,當△BOC∽△BDA時,點D的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,,點E在邊CD上,且,關于AE所在的直線成對稱圖形以點A為中心,把順時針旋轉(zhuǎn),得到,連接GF,則線段GF的長為______

查看答案和解析>>

同步練習冊答案