(2009•江西)如圖,已知線段AB=2a(a>0),M是AB的中點,直線l1⊥AB于點A,直線l2⊥AB于點M,點P是l1左側(cè)一點,P到l1的距離為b(a<b<2a).
(1)作出點P關(guān)于l1的對稱點P1,并在PP1上取一點P2,使點P2、P1關(guān)于l2對稱;
(2)PP2與AB有何位置關(guān)系和數(shù)量關(guān)系,請說明理由.

【答案】分析:P,P1關(guān)于l1對稱,那么PP1⊥l1,ab⊥l1,那么PP1∥AB,即PP2∥AB.∵∠O1O2M=∠O2MA=∠O1AM=∠AO1O2=90°,四邊形O1O2MA是矩形,那么AM=O1O2=AB=a,P,P1關(guān)于l1對稱,P,P2關(guān)于l2對稱,那么PO1=O1O1=b,然后用a,b分別表示出P2O1,再得出PP2是多少,然后再判定PP2和AB的大小關(guān)系.
解答:解:(1)如圖;

(2)PP2與AB平行且相等.
證明:設(shè)PP1分別交l1、l2于點O1、O2
∵P、P1關(guān)于l1對稱,點P2在PP1上,
∴PP2⊥l1
又∵AB⊥l1
∴PP2∥AB
∵l1⊥AB,l2⊥AB
∴l(xiāng)1∥l2
∴四邊形O1AMO2是矩形
∴O1O2=AM=a
∴P、P1關(guān)于l1對稱,P1O1=PO1=b
∵P1、P2關(guān)于l2對稱
∴P2O2=P1O2=P1O1-O1O2=b-a
∴PP2=PP1-P1P2=PP1-2P2O2=2b-2(b-a)=2a
∴PP2AB.
點評:本題主要考查了軸對稱及矩形的判定等知識點,其中判定四邊形O1O2MA是矩形是本題的解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年湖北省荊州市江陵縣三湖中學九年級(下)第一次月考數(shù)學試卷(解析版) 題型:解答題

(2009•江西)如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設(shè)點P的橫坐標為m;
①用含m的代數(shù)式表示線段PF的長,并求出當m為何值時,四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年河南省油田教育中心第一次數(shù)學模擬試卷(解析版) 題型:解答題

(2009•江西)如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設(shè)點P的橫坐標為m;
①用含m的代數(shù)式表示線段PF的長,并求出當m為何值時,四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年安徽省巢湖市初中畢業(yè)班第二次聯(lián)考數(shù)學試卷(解析版) 題型:解答題

(2009•江西)如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設(shè)點P的橫坐標為m;
①用含m的代數(shù)式表示線段PF的長,并求出當m為何值時,四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江西省中考數(shù)學試卷(解析版) 題型:解答題

(2009•江西)如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設(shè)點P的橫坐標為m;
①用含m的代數(shù)式表示線段PF的長,并求出當m為何值時,四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江西省南昌市中考數(shù)學試卷(解析版) 題型:解答題

(2009•江西)如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設(shè)點P的橫坐標為m;
①用含m的代數(shù)式表示線段PF的長,并求出當m為何值時,四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習冊答案