【題目】咸寧市某中學(xué)為了解本校學(xué)生對新聞、體育、動(dòng)畫、娛樂四類電視節(jié)目的喜愛情況,隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下圖所示的兩幅不完整統(tǒng)計(jì)圖,請你根據(jù)圖中信息解答下列問題:
⑴補(bǔ)全條形統(tǒng)計(jì)圖,“體育”對應(yīng)扇形的圓心角是 度;
⑵根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校名學(xué)生中喜愛“娛樂”的有 人;
⑶在此次問卷調(diào)查中,甲、乙兩班分別有人喜愛新聞節(jié)目,若從這人中隨機(jī)抽取人去參加“新聞小記者”培訓(xùn),請用列表法或者畫樹狀圖的方法求所抽取的人來自不同班級(jí)的概率
【答案】(1)72;(2)700;(3).
【解析】試題(1)根據(jù)動(dòng)畫類人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他類型人數(shù)可得體育類人數(shù),用360度乘以體育類人數(shù)所占比例即可得;(2)用樣本估計(jì)總體的思想解決問題;(3)根據(jù)題意先畫出樹狀圖,得出所有情況數(shù),再根據(jù)概率公式即可得出答案.
試題解析:
(1)調(diào)查的學(xué)生總數(shù)為60÷30%=200(人),
則體育類人數(shù)為200﹣(30+60+70)=40,
補(bǔ)全條形圖如下:
“體育”對應(yīng)扇形的圓心角是360°×=72°;
(2)估計(jì)該校2000名學(xué)生中喜愛“娛樂”的有:2000×=700(人),
(3)將兩班報(bào)名的學(xué)生分別記為甲1、甲2、乙1、乙2,樹狀圖如圖所示:
所以P(2名學(xué)生來自不同班)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)和.
求一次函數(shù)和反比例函數(shù)的表達(dá)式;
請直接寫出時(shí),x的取值范圍;
過點(diǎn)B作軸,于點(diǎn)D,點(diǎn)C是直線BE上一點(diǎn),若,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,將邊AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到線段AD,將邊AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到線段AE,連接DE.
(1)、如圖①,當(dāng)∠BAC=90°時(shí),若△ABC的面積為5,則△ADE的面積為________;
(2)如圖②,CF、BG分別是△ABC和△ADE的高,若△ABC為任意三角形,△ABC與△ADE的面積是否相等,請說明理由;
(3)如圖③,連接BD、CE.若AB=4,AC=2,四邊形CEDB的面積為13,則△ABC的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“仁愛礁”自古以來就是中國固有領(lǐng)海,也是中國漁民的傳統(tǒng)漁場.為了維護(hù)我國漁民合法的海洋權(quán)益,每年我“漁政海巡船”都到“仁愛礁”進(jìn)行護(hù)漁活動(dòng).如圖,在島礁東西方向上,有A,B兩艘漁政船,現(xiàn)均收到我故障漁船C的求救信號(hào).已知A,B兩船相距90(+1)海里,漁船C在船A的北偏西30°方向上,漁船C在船B的東北方向上,島礁上有一觀測點(diǎn)D,測得船C正好在觀測點(diǎn)D的北偏東15°方向上
(1)分別求出AC和AD距離(若結(jié)果有根號(hào),請保留根號(hào));
(2)已知距觀測點(diǎn)D處110海里范圍內(nèi)有暗礁.為了及時(shí)營救漁船C,決定讓海巡船A去營救,若海巡船A沿直線AC去營救,途中有無觸暗礁危險(xiǎn)?請說明理由:(參考數(shù)據(jù):≈141,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點(diǎn)E,交CB的延長線于點(diǎn)F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,CD上,且BE=CF.連接AE,BF,AE與BF交于點(diǎn)G.下列結(jié)論錯(cuò)誤的是( )
A. AE=BF B. ∠DAE=∠BFC
C. ∠AEB+∠BFC=90° D. AE⊥BF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D是以AB為直徑的半圓O上一點(diǎn),連接BD,點(diǎn)C是的中點(diǎn),過點(diǎn)C作直線BD的垂線,垂足為點(diǎn)E.
求證:(1)CE是半圓O的切線;
(2)BC2=ABBE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠有甲種原料69千克,乙種原料52千克,現(xiàn)計(jì)劃用這兩種原料生產(chǎn)A,B兩種型號(hào)的產(chǎn)品共80件,已知每件A型號(hào)產(chǎn)品需要甲種原料0.6千克,乙種原料0.9千克;每件B型號(hào)產(chǎn)品需要甲種原料1.1千克,乙種原料0.4千克.請解答下列問題:
(1)該工廠有哪幾種生產(chǎn)方案?
(2)在這批產(chǎn)品全部售出的條件下,若1件A型號(hào)產(chǎn)品獲利35元,1件B型號(hào)產(chǎn)品獲利25元,(1)中哪種方案獲利最大?最大利潤是多少?
(3)在(2)的條件下,工廠決定將所有利潤的25%全部用于再次購進(jìn)甲、乙兩種原料,要求每種原料至少購進(jìn)4千克,且購進(jìn)每種原料的數(shù)量均為整數(shù).若甲種原料每千克40元,乙種原料每千克60元,請直接寫出購買甲、乙兩種原料之和最多的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎自行車去上學(xué)途中,經(jīng)過先上坡后下坡的一段路,在這段路上所騎行的路程(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①小明上學(xué)途中下坡路的長為1800米;②小明上學(xué)途中上坡速度為150米/分,下坡速度為200米/分;③如果小明放學(xué)后按原路返回,且往返過程中,上、下坡的速度都相同,則小明返回時(shí)經(jīng)過這段路比上學(xué)時(shí)多用1分鐘;④如果小明放學(xué)后按原路返回,返回所用時(shí)間與上學(xué)所用時(shí)間相等,且返回時(shí)下坡速度是上坡速度的1.5倍,則返回時(shí)上坡速度是160米/分其中正確的有( )
A.①④B.②③C.②③④D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com