(1)已知:如圖1,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D為AB邊上一點.求證:△ACE≌△BCD
(2)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,圖2是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.

證明:(1)∵∠ACB=∠DCE,
∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.
∵BC=AC,DC=EC,
∴△BCD≌△ACE.

(2)解:假設O為圓形截面所在圓的圓心過O作OC⊥AB于D,交AB于C,
∵OC⊥AB,

由題意可知,CD=4cm. 
設半徑為xcm,則OD=(x-4)cm.
在Rt△BOD中,由勾股定理得:OD2+BD2=OB2,
∴(x-4)2+82=x2
∴x=10.即這個圓形截面的半徑為10cm.
分析:(1)先根據(jù)∠ACB=∠DCE可得出∠BCD=∠ACE,由SAS定理可知△BCD≌△ACE;
(2)假設O為圓形截面所在圓的圓心過O作OC⊥AB于D,交AB于C,由垂徑定理可得出BD,CD的長,設半徑為xcm,在Rt△BOD利用勾股定理即可得出x的值.
點評:本題考查的是垂徑定理的應用,全等三角形的判定定理及勾股定理,解答此類問題的關鍵是根據(jù)題意作出輔助線,構造出直角三角形,利用勾股定理求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

2007年5月17日我市榮獲“國家衛(wèi)生城市稱號”.在“創(chuàng)衛(wèi)”過程中,要在東西方向M、N兩地之間修建一條道路.已知:如圖C點周圍180m范圍內(nèi)為文物保護區(qū),在MN上點A處測得C在A的北偏東60°方向上,從A向東走500m到達B處精英家教網(wǎng),測得C在B的北偏西45°方向上.
(1)NM是否穿過文物保護區(qū)?為什么?(參考數(shù)據(jù):
3
≈1.732)
(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工作需要多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、已知,如圖,正比例函數(shù)與反比例函數(shù)的圖象相交于A、B兩點,A點坐標為(2,1),分別以A、B為圓心的圓與x軸相切,則圖中兩個陰影部分面積的和為
π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,∠1=∠2,
 
.求證:AB=AC.
(1)在橫線上添加一個使命題的結論成立的條件;
(2)寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,直角坐標系內(nèi)的矩形ABCD,頂點A的坐標為(0,3),BC=2AB,P為
AD邊上一動點(與點A、D不重合),以點P為圓心作⊙P與對角線AC相切于點F,過P、F作直線L,交BC邊于點E,當點P運動到點P1位置時,直線L恰好經(jīng)過點B,此時直線的解析式是y=2x+1,
(Ⅰ)求BC、AP1的長;
(Ⅱ)設AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關系式,寫出自變量m的取值范圍;
(Ⅲ)以點E為圓心作⊙E與x軸相切,探究并猜想:⊙P和⊙E有哪幾種位置關系,并求出AP相應的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線y=-
3
3
x2-
2
3
3
x+
3
的圖象與x軸分別交于A,B兩點,與y軸交精英家教網(wǎng)于C點,⊙M經(jīng)過原點O及點A、C,點D是劣弧
OA
上一動點(D點與A、O不重合).
(1)求拋物線的頂點E的坐標;
(2)求⊙M的面積;
(3)連CD交AO于點F,延長CD至G,使FG=2,試探究,當點D運動到何處時,直線GA與⊙M相切,并請說明理由.

查看答案和解析>>

同步練習冊答案