如圖,已知⊙O1,經(jīng)過(guò)⊙O2的圓心O2,且與⊙O2相交于A,B兩點(diǎn),點(diǎn)C為弧AO2B上的一動(dòng)點(diǎn)(不運(yùn)動(dòng)至A,B),連接AC,并延長(zhǎng)交⊙O2于點(diǎn)P,連接BP,BC.
(1)先按題意將圖1補(bǔ)完整,然后操作,觀察.圖1供操作觀察用,操作時(shí)可使用量角器與刻度尺.當(dāng)點(diǎn)C在弧AO2B上運(yùn)動(dòng)時(shí),圖中有哪些角的大小沒(méi)有變化;
(2)請(qǐng)猜想△BCP的形狀,并證明你的猜想(圖2供證明用);
(3)如圖3,當(dāng)PA經(jīng)過(guò)點(diǎn)O2時(shí),AB=4,BP交⊙O1于D,且PB,DB的長(zhǎng)是方程x2+kx+10=0的兩個(gè)根,求⊙O1的半徑.
精英家教網(wǎng)
分析:(1)用圓周角定理判斷,同弧所對(duì)的圓周角相等;
(2)用圓周角、圓心角定理及三角形外角的性質(zhì)判斷;
(3)連接AD,作O2E⊥BP于E,運(yùn)用兩根關(guān)系,割線定理得出2PO22=PB2-10,由垂徑定理,勾股定理得出4PO22=PB2+16,可求PB;又PB•BD=10,可求BD;在△ABD中,由勾股定理可求AD,半徑可得.
解答:精英家教網(wǎng)解:(1)∠ACB,∠BCP,∠P,∠CBP的大小沒(méi)有變化;
∵在⊙O1中,∠ACB是AB弧所對(duì)的圓周角,當(dāng)點(diǎn)C運(yùn)動(dòng)時(shí),大小不變;
∴在⊙O2中,∠P是AB弧所對(duì)的圓周角,當(dāng)點(diǎn)C運(yùn)動(dòng)時(shí),∠P大小不變;

(2)△BCP是等腰三角形;
理由:連接AO2,
∴∠ACB=∠AO2B,
∵在⊙O2中,∠AO2B=2∠P,即∠ACB=2∠P;
又∵∠ACB=∠P+∠PBC,
∴∠P=∠PBC,
∴△BCP是等腰三角形;

(3)連接AD;
∵AP為⊙O2的直徑,
∴∠ABP=90°,
∴AD為⊙O1的直徑;
作O2E⊥BP于E,
∴O2E為△ABP的中位線,O2E=
1
2
AB=2,
∴由割線定理得:PO2•PA=PD•PB,2PO22=(PB-BD)•PB;
∵PB•BD=10,
∴2PO22=PB2-10,
在△O2EP中,由勾股定理得PO22=(
1
2
PB)2+O2E2即:4PO22=PB2+16,
∴PB=6又PB•BD=10,
∴BD=
5
3
;
在△ABD中,由勾股定理得:AD=
AB2+BD2
=
13
3
,
∴⊙O1半徑是AO1=
13
6
點(diǎn)評(píng):本題考查了圓周角定理,垂徑定理,割線定理,勾股定理及兩根關(guān)系的運(yùn)用,具有較強(qiáng)綜合性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某街道兩旁正在安裝漂亮的路燈,經(jīng)查看路燈圖紙,小紅發(fā)現(xiàn)該路燈的設(shè)計(jì)可以看作是“相切兩圓”的一部分,部分?jǐn)?shù)據(jù)如圖所示:⊙O1、⊙O2相切于點(diǎn)C,CD切⊙O1于點(diǎn)C,A、B為路燈燈泡.已知∠AO1O2=∠BO2O1=60°.A、B、C三點(diǎn)距地面MN的距離分別為150
3
cm,180
3
cm,100
3
cm,請(qǐng)根據(jù)以上圖文信息,求:
(1)⊙O1、⊙O2的半徑分別多少cm?
(2)把A、B兩個(gè)燈泡看作兩個(gè)點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆湖北省黃岡教育網(wǎng)九年級(jí)中考模擬數(shù)學(xué)試卷(B卷)(帶解析) 題型:解答題

某街道兩旁正在安裝漂亮的路燈,經(jīng)查看路燈圖紙,小紅發(fā)現(xiàn)該路燈的設(shè)計(jì)可以看作是“相切兩圓”的一部分,部分?jǐn)?shù)據(jù)如圖所示:

⊙O1、⊙O2相切于點(diǎn)C,CD切⊙O1于點(diǎn)C,A、B為路燈燈泡.已知∠AO1O2=∠BO2O1=60°. A、B、C三點(diǎn)距地面MN的距離分別為,請(qǐng)根據(jù)以上圖文信息,求:
(1)⊙O1、⊙O2的半徑分別多少cm;
(2)把A、B兩個(gè)燈泡看作兩個(gè)點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省黃岡教育網(wǎng)九年級(jí)中考模擬數(shù)學(xué)試卷(B卷)(解析版) 題型:解答題

某街道兩旁正在安裝漂亮的路燈,經(jīng)查看路燈圖紙,小紅發(fā)現(xiàn)該路燈的設(shè)計(jì)可以看作是“相切兩圓”的一部分,部分?jǐn)?shù)據(jù)如圖所示:

⊙O1、⊙O2相切于點(diǎn)C,CD切⊙O1于點(diǎn)C,A、B為路燈燈泡.已知∠AO1O2=∠BO2O1=60°. A、B、C三點(diǎn)距地面MN的距離分別為,請(qǐng)根據(jù)以上圖文信息,求:

(1)⊙O1、⊙O2的半徑分別多少cm;

(2)把A、B兩個(gè)燈泡看作兩個(gè)點(diǎn),求線段AB的長(zhǎng).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某街道兩旁正在安裝漂亮的路燈,經(jīng)查看路燈圖紙,小紅發(fā)現(xiàn)該路燈的設(shè)計(jì)可以看作是“相切兩圓”的一部分,部分?jǐn)?shù)據(jù)如圖所示:⊙O1、⊙O2相切于點(diǎn)C,CD切⊙O1于點(diǎn)C,A、B為路燈燈泡.已知∠AO1O2=∠BO2O1=60°.A、B、C三點(diǎn)距地面MN的距離分別為數(shù)學(xué)公式cm,數(shù)學(xué)公式cm,數(shù)學(xué)公式cm,請(qǐng)根據(jù)以上圖文信息,求:
(1)⊙O1、⊙O2的半徑分別多少cm?
(2)把A、B兩個(gè)燈泡看作兩個(gè)點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案