已知,在等腰△ABC中,AB=AC,在射線CA上截取線段CE,在射線AB上截取線段BD,連結(jié)DE,DE所在直線交直線BC于點(diǎn)M.
請(qǐng)?zhí)骄浚?/p>
(1) 如圖①,當(dāng)點(diǎn)E在線段AC上,點(diǎn)D在AB延長(zhǎng)線上時(shí),若BD=CE,請(qǐng)判斷線段MD和線段ME的數(shù)量關(guān)系,并證明你的結(jié)論;
(2) 如圖②,當(dāng)點(diǎn)E在CA的延長(zhǎng)線上,點(diǎn)D在AB的延長(zhǎng)線上時(shí),若BD=CE,則(1)中的結(jié)論還成立嗎?如果成立,請(qǐng)證明;如果不成立,說(shuō)明理由。
(3)如圖③,當(dāng)點(diǎn)E在CA的延長(zhǎng)線上,點(diǎn)D在線段AB上(點(diǎn)D不與A、B重合),DE所在直線與直線BC交于點(diǎn)M,若CE=mBD,(m>1),請(qǐng)你判斷線段MD與線段ME的數(shù)量關(guān)系,并說(shuō)明理由。
解:(1)DM=EM;
證明:過(guò)點(diǎn)E作EF∥AB交BC于點(diǎn)F,
∵AB=AC,∴∠ABC=∠C;
又∵EF∥AB,∴∠ABC=∠EFC,∴∠EFC=∠C,
∴EF=EC.又∵BD=EC,∴EF=BD.
又∵EF∥AB,∴∠ADM=∠MEF.
在△DBM和△EFM中,∠BDE=∠FEM,∠BMD=∠FME,BD=EF
∴△DBM≌△EFM,∴DM=EM.……………..3分
(2)成立;
證明:過(guò)點(diǎn)E作EF∥AB交CB的延長(zhǎng)線于點(diǎn)F,
∵AB=AC,∴∠ABC=∠C;
又∵EF∥AB,∴∠ABC=∠EFC,
∴∠EFC=∠C,∴EF=EC.
又∵BD=EC,∴EF=BD.
又∵EF∥AB,∴∠ADM=∠MEF.
在△DBM和△EFM中,∠BDE=∠FEM,∠BMD=∠FME,BD=EF
∴△DBM≌△EFM;∴DM=EM;……………..7分
(3) MD=ME.
過(guò)點(diǎn)E作EF∥AB交CB的延長(zhǎng)線于點(diǎn)F,
由(2)可知EC=EF
∴EC:BD=EF:BD=EM:DM=m
∴EM=mDM………….9分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知,在等腰△ABC中,AB=AC,在射線CA上截取線段CE,在射線AB上截取線段BD,連結(jié)DE,DE所在直線交直線BC于點(diǎn)M.
請(qǐng)?zhí)骄浚?/p>
(1) 如圖①,當(dāng)點(diǎn)E在線段AC上,點(diǎn)D在AB延長(zhǎng)線上時(shí),若BD=CE,
請(qǐng)判斷線段MD和線段ME的數(shù)量關(guān)系,并證明你的結(jié)論;
(2) 如圖②,當(dāng)點(diǎn)E在CA的延長(zhǎng)線上,點(diǎn)D在AB的延長(zhǎng)線上時(shí),若BD=CE,
則(1)中的結(jié)論還成立嗎?如果成立,請(qǐng)證明;如果不成立,說(shuō)明理由。
(3)如圖③,當(dāng)點(diǎn)E在CA的延長(zhǎng)線上,點(diǎn)D在線段AB上(點(diǎn)D不與A、B重合),DE所在直線與直線BC交于點(diǎn)M,若CE=mBD,(m>1),請(qǐng)你判斷線段MD與線段ME的數(shù)量關(guān)系,并說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com