【題目】方便交通,綠色出行,人們常選擇以共享單車作為代步工具、圖(1)所示的是一輛自行車的實(shí)物圖.圖(2)是這輛自行車的部分幾何示意圖,其中車架檔ACCD的長分別為45cm60cm,且它們互相垂直,座桿CE的長為20cm.點(diǎn)A、C、E在同一條直線上,且∠CAB=75°

(參考數(shù)據(jù):sin75°=0.966,cos75°=0.259,tan75°=3.732

圖(1 圖(2

1)求車架檔AD的長;

2)求車座點(diǎn)E到車架檔AB的距離(結(jié)果精確到1cm).

【答案】(1)75cm;(2)約為63cm

【解析】試題分析:(1)在Rt ACD,AC45,DC60,根據(jù)勾股定理可得AD 即可得到AD的長度;(2)過點(diǎn)EEF AB,垂足為F,由AEAC+CE,在直角 EFA中,根據(jù)EFAEsin75°可求出EF的長度,即為點(diǎn)E到車架檔AB的距離;

試題解析:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x-32圖像上的兩個(gè)不同的點(diǎn)A3,a)和Bx,b),則ab的大小關(guān)系(

A. a≤bB. abC. abD. a≥b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2的相反數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡下列各式:
(1)(﹣2a+1)(2a+1)﹣2a(1﹣2a);
(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知用2輛A型車和1輛B型車裝滿貨物一次可運(yùn)貨10噸;用1輛A型車和2輛B型車裝滿貨物一次可運(yùn)貨11噸.某物流公司現(xiàn)有31噸貨物,計(jì)劃同時(shí)租用A型車a輛,B型車b輛,一次運(yùn)完,且恰好每輛車都裝滿貨物.
根據(jù)以上信息,解答下列問題:
(1)1輛A型車和1輛B型車都裝滿貨物一次可分別運(yùn)貨多少噸?
(2)請(qǐng)你幫該物流公司設(shè)計(jì)租車方案(即A、B兩種型號(hào)的車各租幾輛,有幾種租車方案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某品牌太陽能熱水器的實(shí)物圖和橫斷面示意圖,已知真空集熱管AB與支架CD所在直線相交于水箱橫斷面⊙O的圓心,支架CD與水平面AE垂直,AB=110厘米,∠BAC=37°,垂直支架CD=57厘米,DE是另一根輔助支架,且∠CED=60°.

(1)求輔助支架DE長度;(結(jié)果保留根號(hào))

(2)求水箱半徑OD的長度.(結(jié)果精確到1厘米,參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】日前一名男子報(bào)警稱,在菲律賓南部發(fā)現(xiàn)印有馬來西亞國旗的飛機(jī)殘骸,懷疑是失聯(lián)的馬航MH370客機(jī),馬來西亞警方立即派出直升機(jī)前去查證.飛機(jī)在空中A點(diǎn)看見殘骸C的俯角為20°,繼續(xù)沿直線AE飛行16秒到達(dá)B點(diǎn),看見殘骸C的俯角為45°,已知飛機(jī)的飛行度為3150米/分.

(參考數(shù)據(jù):tan20°≈0.3,cos20°≈0.9,sin20°≈0.2)
(1)求殘骸到直升機(jī)航線的垂直距離CD為多少米?
(2)在B點(diǎn)時(shí),機(jī)組人員接到總指揮部電話,8分鐘后該海域?qū)⒂瓉肀容^大的風(fēng)浪,為了能及時(shí)觀察取證,機(jī)組人員決定飛行到D點(diǎn)立即空投設(shè)備,將殘骸抓回機(jī)艙(忽略風(fēng)速對(duì)設(shè)備的影響),己知設(shè)備在空中的降落與上升速度均為700米/分.設(shè)備抓取殘骸本身需要6分鐘,請(qǐng)問能否在風(fēng)浪來臨前將殘骸抓回機(jī)艙?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:,⊙經(jīng)過點(diǎn)、.以為一邊畫平行四邊形,另一邊經(jīng)過點(diǎn)(如圖1).以點(diǎn)為圓心,為半徑畫弧,交線段于點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合).

(1)求證:;

(2)如果⊙的半徑長為(如圖2),設(shè),,求關(guān)于的函數(shù)解析式,并寫出它的定義域;

(3)如果⊙的半徑長為,聯(lián)結(jié),當(dāng)時(shí),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:對(duì)于實(shí)數(shù)a,符號(hào)[a]表示不大于a的最大整數(shù),例如:[4.7]=4,[﹣π]=﹣4,[3]=3,如果[ +1]=﹣5,則x的取值范圍為

查看答案和解析>>

同步練習(xí)冊答案