已知反比例函數(shù)(k是常數(shù),且k≠0),x與y的部分對應(yīng)值如表所示,那么m的值等于( )
x-13
y1m

A.-3
B.
C.
D.3
【答案】分析:將表中的(-1,1)代入解析式,求出k的值,再將(3,m)代入解析式即可求出m的值.
解答:解:根據(jù)圖表可得函數(shù)圖象過(-1,1)、(3,m),
將(-1,1)代入解析式可得:
k=1×(-1)=-1,
函數(shù)解析式為:y=-,
將(3,m)代入解析式得:
m=-
故選C.
點(diǎn)評:此題將兩種函數(shù)的表示法:圖表法和解析式法同時呈現(xiàn),不僅考查了用待定系數(shù)法求函數(shù)解析式,還考查了對函數(shù)表示法的掌握情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年四川省成都市武侯區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知反比例函數(shù)(m是常數(shù),m≠0),一次函數(shù)y=ax+b(a、b為常數(shù),a≠0),其中一次函數(shù)與x軸,y軸的交點(diǎn)分別是A(-4,0),B(0,2).

(1)求一次函數(shù)的關(guān)系式;

(2)反比例函數(shù)圖象上有一點(diǎn)P滿足:①PA⊥x軸;②PO=(O為坐標(biāo)原點(diǎn)),求反比例函數(shù)的關(guān)系式;

(3)求點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)Q的坐標(biāo),判斷點(diǎn)Q是否在該反比例函數(shù)的圖象上.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年遼寧省沈陽市中考數(shù)學(xué)模擬試卷(五)(解析版) 題型:解答題

如圖,已知反比例函數(shù)(m是常數(shù),m≠0),一次函數(shù)y=ax+b(a、b為常數(shù),a≠0),其中一次函數(shù)與x軸,y軸的交點(diǎn)分別是A(-4,0),B(0,2).
(1)求一次函數(shù)的關(guān)系式;
(2)反比例函數(shù)圖象上有一點(diǎn)P滿足:①PA⊥x軸;②PO=(O為坐標(biāo)原點(diǎn)),求反比例函數(shù)的關(guān)系式;
(3)求點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)Q的坐標(biāo),判斷點(diǎn)Q是否在該反比例函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年貴州省貴陽市中考數(shù)學(xué)模擬試卷(六)(解析版) 題型:解答題

如圖,已知反比例函數(shù)(m是常數(shù),m≠0),一次函數(shù)y=ax+b(a、b為常數(shù),a≠0),其中一次函數(shù)與x軸,y軸的交點(diǎn)分別是A(-4,0),B(0,2).
(1)求一次函數(shù)的關(guān)系式;
(2)反比例函數(shù)圖象上有一點(diǎn)P滿足:①PA⊥x軸;②PO=(O為坐標(biāo)原點(diǎn)),求反比例函數(shù)的關(guān)系式;
(3)求點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)Q的坐標(biāo),判斷點(diǎn)Q是否在該反比例函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年四川省攀枝花市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知反比例函數(shù)(m是常數(shù),m≠0),一次函數(shù)y=ax+b(a、b為常數(shù),a≠0),其中一次函數(shù)與x軸,y軸的交點(diǎn)分別是A(-4,0),B(0,2).
(1)求一次函數(shù)的關(guān)系式;
(2)反比例函數(shù)圖象上有一點(diǎn)P滿足:①PA⊥x軸;②PO=(O為坐標(biāo)原點(diǎn)),求反比例函數(shù)的關(guān)系式;
(3)求點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)Q的坐標(biāo),判斷點(diǎn)Q是否在該反比例函數(shù)的圖象上.

查看答案和解析>>

同步練習(xí)冊答案