某文化用品商店新進(jìn)一批畢業(yè)紀(jì)念冊,該紀(jì)念冊每本進(jìn)價(jià)10元,售價(jià)定為每本18元,該商店計(jì)劃出臺(tái)一下的促銷方案:凡一次購買紀(jì)念冊6本以上的(不含6本),每多買一本,所購買的每本紀(jì)念冊的售價(jià)就降低0.2元,但是每本紀(jì)念冊的最低售價(jià)不低于13元.
(1)問一次購買該紀(jì)念冊至少多少本時(shí)才能用最低價(jià)購買?
(2)求當(dāng)一次夠買該紀(jì)念冊x本時(shí),商店所獲利潤W(元)與購買量x(本)之間的函數(shù)關(guān)系式;
(3)在研討促銷方案過程中,店員發(fā)現(xiàn)了一個(gè)奇怪的現(xiàn)象:“如果商店一次售出30本紀(jì)念冊所獲得利潤,比一次售出26本紀(jì)念冊所獲得利潤低.”請你解釋其中的道理,并根據(jù)其中的道理替該商店修改一下促銷方案,使賣得紀(jì)念冊越多所獲利潤越大.
【答案】分析:(1)設(shè)購買紀(jì)念冊m本,根據(jù)題意得18-0.2(m-6)≥13,解不等式得到m≤31,即可得到一次購買該紀(jì)念冊至少多少本;
(2)分類:當(dāng)x≤6時(shí);當(dāng)6<x≤31時(shí);當(dāng)x>31時(shí),分別用購買量x乘以每本的利潤得到商店所獲利潤W(元);
(3)利用頂點(diǎn)公式求出當(dāng)6<x≤31時(shí),W=-0.2x2+9.2x,當(dāng)23≤x≤31時(shí),W隨x的增大而減小,于是可解釋“如果商店一次售出30本紀(jì)念冊所獲得利潤,比一次售出26本紀(jì)念冊所獲得利潤低.”為了使賣得紀(jì)念冊越多所獲利潤越大把每本紀(jì)念冊的最低售價(jià)不低于13元改為18-0.2×(23-6)=14.6(元),這樣當(dāng)6<x<23時(shí),W=-0.2x2+9.2x,W隨x的增大而增大,其他兩個(gè)函數(shù)也是增函數(shù),可滿足使賣得紀(jì)念冊越多所獲利潤越大.
解答:解:(1)設(shè)購買紀(jì)念冊m本,
∴18-0.2(m-6)≥13,解得m≤31,
∴至少買31本才能用最低價(jià)購買;
(2)①當(dāng)x≤6時(shí),
W=(18-10)x=8x(x為整數(shù));
②當(dāng)6<x≤31時(shí),
W=x[18-0.2(x-6)-10]
=x(9.2-0.2x)
=-0.2x2+9.2x( x為整數(shù));
③當(dāng)x>31時(shí),
W=(13-10)x=3x(x為整數(shù));
(3)由②中W=-0.2x2+9.2x,
∵a=-0.2<0,x=-=23,
∴當(dāng)23≤x≤31時(shí),W隨x的增大而減。
∴商店一次售出30本紀(jì)念冊所獲的利潤,比一次售出26本紀(jì)念冊所獲的利潤低,
又∵當(dāng)x=23時(shí),紀(jì)念冊的售價(jià)為18-0.2×(23-6)=14.6(元),
∴商店把促銷方案中:“紀(jì)念冊的最低售價(jià)不低于13元”改為“紀(jì)念冊的最低售價(jià)不低于14.6元”,這樣三個(gè)函數(shù)在個(gè)自變量范圍都為增函數(shù),于是可以使賣的紀(jì)念冊越多商店所獲的利潤越大.
點(diǎn)評:本題考查了二次函數(shù)的應(yīng)用:利用二次函數(shù)關(guān)系式表示實(shí)際生活中的數(shù)量關(guān)系,然后利用二次函數(shù)的性質(zhì)解決實(shí)際問題.也考查了一次函數(shù)的應(yīng)用以及分類討論思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某文化用品商店新進(jìn)一批畢業(yè)紀(jì)念冊,該紀(jì)念冊每本進(jìn)價(jià)10元,售價(jià)定為每本18元,該商店計(jì)劃出臺(tái)一下的促銷方案:凡一次購買紀(jì)念冊6本以上的(不含6本),每多買一本,所購買的每本紀(jì)念冊的售價(jià)就降低0.2元,但是每本紀(jì)念冊的最低售價(jià)不低于13元.
(1)問一次購買該紀(jì)念冊至少多少本時(shí)才能用最低價(jià)購買?
(2)求當(dāng)一次夠買該紀(jì)念冊x本時(shí),商店所獲利潤W(元)與購買量x(本)之間的函數(shù)關(guān)系式;
(3)在研討促銷方案過程中,店員發(fā)現(xiàn)了一個(gè)奇怪的現(xiàn)象:“如果商店一次售出30本紀(jì)念冊所獲得利潤,比一次售出26本紀(jì)念冊所獲得利潤低.”請你解釋其中的道理,并根據(jù)其中的道理替該商店修改一下促銷方案,使賣得紀(jì)念冊越多所獲利潤越大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:衡水一模 題型:解答題

某文化用品商店新進(jìn)一批畢業(yè)紀(jì)念冊,該紀(jì)念冊每本進(jìn)價(jià)10元,售價(jià)定為每本18元,該商店計(jì)劃出臺(tái)一下的促銷方案:凡一次購買紀(jì)念冊6本以上的(不含6本),每多買一本,所購買的每本紀(jì)念冊的售價(jià)就降低0.2元,但是每本紀(jì)念冊的最低售價(jià)不低于13元.
(1)問一次購買該紀(jì)念冊至少多少本時(shí)才能用最低價(jià)購買?
(2)求當(dāng)一次夠買該紀(jì)念冊x本時(shí),商店所獲利潤W(元)與購買量x(本)之間的函數(shù)關(guān)系式;
(3)在研討促銷方案過程中,店員發(fā)現(xiàn)了一個(gè)奇怪的現(xiàn)象:“如果商店一次售出30本紀(jì)念冊所獲得利潤,比一次售出26本紀(jì)念冊所獲得利潤低.”請你解釋其中的道理,并根據(jù)其中的道理替該商店修改一下促銷方案,使賣得紀(jì)念冊越多所獲利潤越大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年河北省衡水市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

某文化用品商店新進(jìn)一批畢業(yè)紀(jì)念冊,該紀(jì)念冊每本進(jìn)價(jià)10元,售價(jià)定為每本18元,該商店計(jì)劃出臺(tái)一下的促銷方案:凡一次購買紀(jì)念冊6本以上的(不含6本),每多買一本,所購買的每本紀(jì)念冊的售價(jià)就降低0.2元,但是每本紀(jì)念冊的最低售價(jià)不低于13元.
(1)問一次購買該紀(jì)念冊至少多少本時(shí)才能用最低價(jià)購買?
(2)求當(dāng)一次夠買該紀(jì)念冊x本時(shí),商店所獲利潤W(元)與購買量x(本)之間的函數(shù)關(guān)系式;
(3)在研討促銷方案過程中,店員發(fā)現(xiàn)了一個(gè)奇怪的現(xiàn)象:“如果商店一次售出30本紀(jì)念冊所獲得利潤,比一次售出26本紀(jì)念冊所獲得利潤低.”請你解釋其中的道理,并根據(jù)其中的道理替該商店修改一下促銷方案,使賣得紀(jì)念冊越多所獲利潤越大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省連云港市新海實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

某文化用品商店新進(jìn)一批畢業(yè)紀(jì)念冊,該紀(jì)念冊每本進(jìn)價(jià)10元,售價(jià)定為每本18元,該商店計(jì)劃出臺(tái)一下的促銷方案:凡一次購買紀(jì)念冊6本以上的(不含6本),每多買一本,所購買的每本紀(jì)念冊的售價(jià)就降低0.2元,但是每本紀(jì)念冊的最低售價(jià)不低于13元.
(1)問一次購買該紀(jì)念冊至少多少本時(shí)才能用最低價(jià)購買?
(2)求當(dāng)一次夠買該紀(jì)念冊x本時(shí),商店所獲利潤W(元)與購買量x(本)之間的函數(shù)關(guān)系式;
(3)在研討促銷方案過程中,店員發(fā)現(xiàn)了一個(gè)奇怪的現(xiàn)象:“如果商店一次售出30本紀(jì)念冊所獲得利潤,比一次售出26本紀(jì)念冊所獲得利潤低.”請你解釋其中的道理,并根據(jù)其中的道理替該商店修改一下促銷方案,使賣得紀(jì)念冊越多所獲利潤越大.

查看答案和解析>>

同步練習(xí)冊答案