【小題1】背景 :在圖1中,已知線(xiàn)段AB,CD。其中點(diǎn)分別是E,F(xiàn)。
①若A(-1,0),B(3,0),則E點(diǎn)的坐標(biāo)為_(kāi)_______;
②若C(-2,2),D(-2,-1),則F點(diǎn)的坐標(biāo)為_(kāi)________;
【小題2】探究: 在圖2中,已知線(xiàn)段AB的端點(diǎn)坐標(biāo)A(a,b),B(c,d),求出圖中AB中點(diǎn)D的坐標(biāo)(用含a,b,c,d的代數(shù)式表示),并給出求解過(guò)程;
歸納: 無(wú)論線(xiàn)段AB處于直角坐標(biāo)系中的哪個(gè)位置,當(dāng)其端點(diǎn)坐標(biāo)為A(a,b),B(c,d),AB中點(diǎn)為D(x,y)時(shí),x=______,y=_________(不必證明)。
運(yùn)用:  在圖3中,一次函數(shù)y=x-2與反比例函數(shù)的圖像交點(diǎn)為A,B。
①求出交點(diǎn)A,B的坐標(biāo);
②若以A、O、B、P為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)利用上面的結(jié)論求出頂點(diǎn)P的坐標(biāo)。


【小題1】背景:①(1,0),②
【小題2】探究:過(guò)A,B兩點(diǎn)分別作x軸、y軸的垂線(xiàn),利用梯形中位線(xiàn)定理易得AB中點(diǎn)D的坐標(biāo)為
歸納:………………………………………………………………………….6分
運(yùn)用:①由題意得解得:。由題意得A(-1,-3),B(3,1)。②  AB為對(duì)角線(xiàn)時(shí)P(2,-2); AO為對(duì)角線(xiàn)時(shí)P(-4,-4); BO為對(duì)角線(xiàn)時(shí)P(4,-4);…………….10分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


【小題1】背景 :在圖1中,已知線(xiàn)段AB,CD。其中點(diǎn)分別是E,F(xiàn)。
①若A(-1,0),B(3,0),則E點(diǎn)的坐標(biāo)為_(kāi)_______;
②若C(-2,2),D(-2,-1),則F點(diǎn)的坐標(biāo)為_(kāi)________;
【小題2】探究: 在圖2中,已知線(xiàn)段AB的端點(diǎn)坐標(biāo)A(a,b),B(c,d),求出圖中AB中點(diǎn)D的坐標(biāo)(用含a,b,c,d的代數(shù)式表示),并給出求解過(guò)程;
歸納: 無(wú)論線(xiàn)段AB處于直角坐標(biāo)系中的哪個(gè)位置,當(dāng)其端點(diǎn)坐標(biāo)為A(a,b),B(c,d),AB中點(diǎn)為D(x,y)時(shí),x=______,y=_________(不必證明)。
運(yùn)用:  在圖3中,一次函數(shù)y=x-2與反比例函數(shù)的圖像交點(diǎn)為A,B。
①求出交點(diǎn)A,B的坐標(biāo);
②若以A、O、B、P為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)利用上面的結(jié)論求出頂點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題背景:在中,、三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積.小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)(即三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求的高,而借用網(wǎng)格就能計(jì)算出它的面積.
【小題1】請(qǐng)你將的面積直接填寫(xiě)在橫線(xiàn)上._________________________思維拓展:
【小題2】我們把上述求面積的方法叫做構(gòu)圖法.若 三邊的長(zhǎng)分別為、),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為)畫(huà)出相應(yīng)的,并求出它的面積.探索創(chuàng)新:
【小題3】若三邊的長(zhǎng)分別為、,且),試運(yùn)用構(gòu)圖法求出這三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省杭州市蕭山瓜瀝片八年級(jí)12月月考數(shù)學(xué)卷 題型:解答題

問(wèn)題背景:在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積.
小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.

【小題1】(1)請(qǐng)你將△ABC的面積直接填寫(xiě)在橫線(xiàn)上.____ _______
【小題2】(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.若△ABC三邊的長(zhǎng)分別為a、2a、a(a>0),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫(huà)出相應(yīng)的△ABC,并求出它的面積.
【小題3】(3)若△ABC三邊的長(zhǎng)分別為、、2(m>0,n>0,且mn),試運(yùn)用構(gòu)圖法求出這三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆浙江省金華市浦江五中九年級(jí)下學(xué)期月考數(shù)學(xué)卷 題型:解答題

題背景:如圖1,四邊形ABCD和CEFG都是正方形,B,C,E在同一條直線(xiàn)上,連接BG,DE.

問(wèn)題探究:
【小題1】(1)①如圖1所示,當(dāng)G在CD邊上時(shí),猜想線(xiàn)段BG、DE的數(shù)量關(guān)系及所在直線(xiàn)的位置關(guān)系.(不要求證明)
②將圖1中的正方形CEFG繞著點(diǎn)C按順時(shí)針(或逆時(shí)針)方向旋轉(zhuǎn)任意角度α,得到如圖2,如圖3情形.請(qǐng)你通過(guò)觀察、測(cè)量等方法判斷①中得到的結(jié)論是否仍然成立,請(qǐng)選擇圖2或圖3證明你的判斷.
類(lèi)比研究:
【小題2】(2)若將原題中的“正方形”改為“矩形”(如圖所示),且=k(其中k>0),請(qǐng)寫(xiě)出 線(xiàn)段BG、DE的數(shù)量關(guān)系及位置關(guān)系.請(qǐng)選擇圖5或圖6證明你的判斷(僅證數(shù)量關(guān)系).
拓展應(yīng)用:
【小題3】(3)在(1)中圖2中,連接DG、BE,若AB=3,EF=2,求BE2+DG2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案