(2005•岳陽(yáng))如圖,已知正方形ABCD,把一個(gè)直角與正方形疊合,使直角頂點(diǎn)與A重合,兩邊分別與AB、AD重合.將直角繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),當(dāng)直角的一邊與BC相交于E點(diǎn),另一邊與CD的延長(zhǎng)線(xiàn)相交于F點(diǎn)時(shí),作∠EAF的平分線(xiàn)交CD于G,連接EG.
求證:(1)BE=DF;(2)BE+DG=EG.

【答案】分析:(1)根據(jù)題中所給條件證明△ABE≌△ADF即可.
(2)結(jié)合(1)中已證得的條件應(yīng)證明EG=FG,證明△AEG≌△AFG即可.
解答:證明:(1)∵∠BAE=∠DAF,AB=AD,∠B=∠ADF=90°,
∴△ABE≌△ADF,
∴AE=AF,BE=DF.

(2)∵AG為∠EAF的角平分線(xiàn),
∴∠EAG=∠FAG,
又∵AE=AF,AG=AG,
∴△AEG≌△AFG,
∴EG=FG,
∵FG=DG+FD,
∴EG=BE+DG.
點(diǎn)評(píng):兩條線(xiàn)段在不同的三角形中要證明相等時(shí),通常是利用全等來(lái)進(jìn)行證明,需注意已證得條件在以后證明中的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•岳陽(yáng))如圖,拋物線(xiàn)y=-x2+x+6,與x軸交于A、B兩點(diǎn),與y軸相交于C點(diǎn).
(1)求△ABC的面積;
(2)已知E點(diǎn)(0,-3),在第一象限的拋物線(xiàn)上取點(diǎn)D,連接DE,使DE被x軸平分,試判定四邊形ACDE的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年湖南省岳陽(yáng)市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•岳陽(yáng))如圖,拋物線(xiàn)y=-x2+x+6,與x軸交于A、B兩點(diǎn),與y軸相交于C點(diǎn).
(1)求△ABC的面積;
(2)已知E點(diǎn)(0,-3),在第一象限的拋物線(xiàn)上取點(diǎn)D,連接DE,使DE被x軸平分,試判定四邊形ACDE的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2005•岳陽(yáng))如圖,△ABC中,∠BAC=90°,AB=AC=1,點(diǎn)D是BC上一個(gè)動(dòng)點(diǎn)(不與B、C重合),在AC上取E點(diǎn),使∠ADE=45度.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng):△ADE是等腰三角形時(shí),求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年湖南省岳陽(yáng)市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•岳陽(yáng))如圖,△ABC中,∠BAC=90°,AB=AC=1,點(diǎn)D是BC上一個(gè)動(dòng)點(diǎn)(不與B、C重合),在AC上取E點(diǎn),使∠ADE=45度.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng):△ADE是等腰三角形時(shí),求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案