精英家教網(wǎng)如圖,在?ABCD中,BC=2AB=4,點(diǎn)E、F分別是BC、AD的中點(diǎn).
(1)求證:△ABE≌△CDF;
(2)當(dāng)四邊形AECF為菱形時(shí),求出該菱形的面積.
分析:第(1)問(wèn)要證明三角形全等,由平行四邊形的性質(zhì),很容易用SAS證全等.
第(2)要求菱形的面積,在第(1)問(wèn)的基礎(chǔ)上很快知道△ABE為等邊三角形.這樣菱形的高就可求了,用面積公式可求得.
解答:精英家教網(wǎng)(1)證明:∵在?ABCD中,AB=CD,
∴BC=AD,∠ABC=∠CDA.
又∵BE=EC=
1
2
BC,AF=DF=
1
2
AD,
∴BE=DF.
∴△ABE≌△CDF.

(2)解:∵四邊形AECF為菱形時(shí),
∴AE=EC.
又∵點(diǎn)E是邊BC的中點(diǎn),
∴BE=EC,即BE=AE.
又BC=2AB=4,
∴AB=
1
2
BC=BE,
∴AB=BE=AE,即△ABE為等邊三角形,(6分)
?ABCD的BC邊上的高為2×sin60°=
3
,(7分)
∴菱形AECF的面積為2
3
.(8分)
點(diǎn)評(píng):考查了全等三角形,四邊形的知識(shí)以及邏輯推理能力.
(1)用SAS證全等;
(2)若四邊形AECF為菱形,則AE=EC=BE=AB,所以△ABE為等邊三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=
29
,AC=4,BD=10.
問(wèn):(1)AC與BD有什么位置關(guān)系?說(shuō)明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點(diǎn)E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長(zhǎng)線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說(shuō)明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長(zhǎng)線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時(shí),求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點(diǎn)O,連接CE,則△CBE的周長(zhǎng)是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊(cè)答案