如圖,已知拋物線y=ax2-4x+c經(jīng)過點A(0,-6)和B(3,-9).
(1)求出拋物線的解析式;
(2)寫出拋物線的對稱軸方程及頂點坐標(biāo);
(3)點P(m,m)與點Q均在拋物線上(其中m>0),且這兩點關(guān)于拋物線的對稱軸對稱,求m的值及點Q的坐標(biāo);
(4)在滿足(3)的情況下,在拋物線的對稱軸上尋找一點M,使得△QMA的周長最。
【答案】分析:(1)將A、B點的坐標(biāo)代入拋物線的解析式中,通過聯(lián)立方程組求得a、c的值,從而確定該拋物線的解析式.
(2)用配方法將(1)所得拋物線解析式化為頂點坐標(biāo)式,即可得到其對稱軸方程和頂點坐標(biāo).
(3)由于點P在拋物線的圖象上,那么點P的坐標(biāo)一定滿足該拋物線的解析式,將其代入拋物線的解析式中,即可求得m的值,進(jìn)而可根據(jù)(2)得到的對稱軸方程求得點Q的坐標(biāo).
(4)△QMA中,QA的長是定值,若其周長最小,那么MA+MQ的值最小,由于Q、P關(guān)于拋物線的對稱軸對稱,若連接AP,那么直線AP與拋物線對稱軸的交點必為所求的M點,可先利用待定系數(shù)法求得直線AC的解析式,然后聯(lián)立拋物線的對稱軸方程求出點M的坐標(biāo).
解答:解:(1)依題意有,

;
∴拋物線的解析式為:y=x2-4x-6.

(2)把y=x2-4x-6配方得,y=(x-2)2-10,
∴對稱軸方程為x=2;
頂點坐標(biāo)(2,-10).

(3)由點P(m,m)在拋物線上,
有m=m2-4m-6,
即m2-5m-6=0,
∴m1=6或m2=-1(舍去),
∴P(6,6),
∵點P、Q均在拋物線上,且關(guān)于對稱軸x=2對稱,
∴Q(-2,6).

(4)連接AQ,AP,直線AP與對稱軸x=2相交于點M,由于P,Q兩點關(guān)于對稱軸對稱,由軸對稱性質(zhì)可知,此時的交點M,能夠使得△QAM的周長最小;
設(shè)直線PA的解析式y(tǒng)=kx+b,
∴有,

∴直線PA的解析式為:y=2x-6;
設(shè)點M(2,n),
則有n=2×2-6=-2,
此時點M(2,-2)能夠使得△AMQ的周長最。
點評:此題主要考查了二次函數(shù)解析式的確定、拋物線頂點坐標(biāo)的求法、函數(shù)圖象上點的坐標(biāo)意義、平面展開-最短路徑等知識點,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標(biāo),若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案