(2009•天水)如左圖,在平面直角坐標系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點為D點,與y軸交于C點,與x軸交于A、B兩點,A點在原點的左側(cè),B點的坐標為(3,0),OB=OC,tan∠ACO=
(1)求這個二次函數(shù)的表達式.
(2)經(jīng)過C、D兩點的直線,與x軸交于點E,在該拋物線上是否存在這樣的點F,使以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請求出點F的坐標;若不存在,請說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
(4)如圖,若點G(2,y)是該拋物線上一點,點P是直線AG下方的拋物線上一動點,當點P運動到什么位置時,△APG的面積最大?求出此時P點的坐標和△APG的最大面積.

【答案】分析:(1)求二次函數(shù)的表達式,需要求出A、B、C三點坐標.已知B點坐標,且OB=OC,可知C(0,3),tan∠ACO=,則A坐標為(-1,0).將A,B,C三點坐標代入關(guān)系式,可求得二次函數(shù)的表達式.
(2)假設(shè)存在這樣的點F(m,n),已知拋物線關(guān)系式,求出頂點D坐標,今兒求出直線CD,E是直線與x軸交點,可得E點坐標.四邊形AECF為平行四邊形,則CE∥AF,則兩直線斜率相等,可列等式(1),CE=AF,可列等式(2),F(xiàn)在拋物線上,為等式(3),根據(jù)這三個等式,即可求出m、n是否存在.
(3)分情況討論,當圓在x軸上方時,根據(jù)題意可知,圓心必定在拋物線的對稱軸上,設(shè)圓半徑為r,則N的坐標為(r+1,r),將其代入拋物線解析式,可求出r的值.當圓在x軸的下方時,方法同上,只是N的坐標變?yōu)椋╮+1,-r),代入拋物線解析式即可求解.
(4)G在拋物線上,代入解析式求出G點坐標,設(shè)點P的坐標為(x,y),即(x,x2-2x-3)已知點A、G坐標,可求出線段AG的長度,以及直線AG的解析式,再根據(jù)點到直線的距離求出P到直線的距離,即為三角形AGP的高,從而用x表示出三角形的面積,然后求當面積最大時x的值.
解答:解:(1)方法一:由已知得:C(0,-3),A(-1,0)(1分)
將A、B、C三點的坐標代入
(2分)
解得:(3分)
所以這個二次函數(shù)的表達式為:y=x2-2x-3(3分)
方法二:由已知得:C(0,-3),A(-1,0)(1分)
設(shè)該表達式為:y=a(x+1)(x-3)(2分)
將C點的坐標代入得:a=1(3分)
所以這個二次函數(shù)的表達式為:y=x2-2x-3(3分)
(注:表達式的最終結(jié)果用三種形式中的任一種都不扣分)

(2)方法一:存在,F(xiàn)點的坐標為(2,-3)(4分)
理由:易得D(1,-4),
所以直線CD的解析式為:y=-x-3
∴E點的坐標為(-3,0)(4分)
由A、C、E、F四點的坐標得:AE=CF=2,AE∥CF
∴以A、C、E、F為頂點的四邊形為平行四邊形
∴存在點F,坐標為(2,-3)(5分)
方法二:易得D(1,-4),所以直線CD的解析式為:y=-x-3
∴E點的坐標為(-3,0)(4分)
∵以A、C、E、F為頂點的四邊形為平行四邊形
∴F點的坐標為(2,-3)或(-2,-3)或(-4,3)
代入拋物線的表達式檢驗,只有(2,-3)符合
∴存在點F,坐標為(2,-3)(5分)

(3)如圖,①當直線MN在x軸上方時,
設(shè)圓的半徑為R(R>0),則N(R+1,R),
代入拋物線的表達式,解得(6分)
②當直線MN在x軸下方時,
設(shè)圓的半徑為r(r>0),
則N(r+1,-r),
代入拋物線的表達式,
解得(7分)
∴圓的半徑為.(7分)

(4)過點P作y軸的平行線與AG交于點Q,
易得G(2,-3),直線AG為y=-x-1.(8分)
設(shè)P(x,x2-2x-3),則Q(x,-x-1),
PQ=-x2+x+2.S△APG=S△APQ+S△GPQ=(-x2+x+2)×3(9分)
當x=時,△APG的面積最大
此時P點的坐標為(,-),S△APG的最大值為.(10分)
點評:此題考查二次函數(shù)與x軸,y軸坐標求法,頂點坐標公式,二次函數(shù)圖象與平行四邊形,圓相結(jié)合,重點考查了平行四邊形,圓的性質(zhì)特征.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2009•天水)如左圖,在平面直角坐標系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點為D點,與y軸交于C點,與x軸交于A、B兩點,A點在原點的左側(cè),B點的坐標為(3,0),OB=OC,tan∠ACO=
(1)求這個二次函數(shù)的表達式.
(2)經(jīng)過C、D兩點的直線,與x軸交于點E,在該拋物線上是否存在這樣的點F,使以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請求出點F的坐標;若不存在,請說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
(4)如圖,若點G(2,y)是該拋物線上一點,點P是直線AG下方的拋物線上一動點,當點P運動到什么位置時,△APG的面積最大?求出此時P點的坐標和△APG的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2009•天水)如圖,在平面直角坐標系xOy中,矩形OEFG的頂點E的坐標為(4,0),頂點G的坐標為(0,2),將矩形OEFG繞點O逆時針旋轉(zhuǎn),使點F落在y軸的點N處,得到矩形OMNP,OM與GF交于點A.
(1)判斷△OGA和△OMN是否相似,并說明理由;
(2)求圖象經(jīng)過點A的反比例函數(shù)的解析式;
(3)設(shè)(2)中的反比例函數(shù)圖象交EF于點B,求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江蘇省鹽城市解放路實驗學校中考數(shù)學模擬試卷(解析版) 題型:解答題

(2009•天水)如圖,在平面直角坐標系xOy中,矩形OEFG的頂點E的坐標為(4,0),頂點G的坐標為(0,2),將矩形OEFG繞點O逆時針旋轉(zhuǎn),使點F落在y軸的點N處,得到矩形OMNP,OM與GF交于點A.
(1)判斷△OGA和△OMN是否相似,并說明理由;
(2)求圖象經(jīng)過點A的反比例函數(shù)的解析式;
(3)設(shè)(2)中的反比例函數(shù)圖象交EF于點B,求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年廣東省深圳市中考數(shù)學試卷(解析版) 題型:解答題

(2009•天水)如左圖,在平面直角坐標系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點為D點,與y軸交于C點,與x軸交于A、B兩點,A點在原點的左側(cè),B點的坐標為(3,0),OB=OC,tan∠ACO=
(1)求這個二次函數(shù)的表達式.
(2)經(jīng)過C、D兩點的直線,與x軸交于點E,在該拋物線上是否存在這樣的點F,使以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請求出點F的坐標;若不存在,請說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
(4)如圖,若點G(2,y)是該拋物線上一點,點P是直線AG下方的拋物線上一動點,當點P運動到什么位置時,△APG的面積最大?求出此時P點的坐標和△APG的最大面積.

查看答案和解析>>

同步練習冊答案