如圖,在?ABCD中,過(guò)對(duì)角線交點(diǎn)O引一直線,交AD于E,交BC于F,若AB=2.4cm,BC=4cm,OE=1.1cm,則四邊形CDEF的周長(zhǎng)為   
【答案】分析:先利用平行四邊形的性質(zhì)求出AB、CD、BC、AD的值,可利用全等的性質(zhì)得到△AEO≌△CFO,即可求出四邊形的周長(zhǎng).
解答:解:已知AB=2.4cm,BC=4cm,OE=1.1cm,
根據(jù)平行四邊形的性質(zhì),AB=CD=2.4cm,BC=AD=4cm,
在△AEO和△CFO中OA=OC,∠OAE=∠OCF,∠AOE=∠COF,
所以△AEO≌△CFO,OE=OF=1.1=EF,
則EFCD的周長(zhǎng)=ED+CD+CF+EF=(DE+CF)+AB+EF=4+2.4+2.2=8.6cm.
則EFCD的周長(zhǎng)是8.6cm.
故答案為:8.6cm.
點(diǎn)評(píng):本題主要考查了平行四邊形的基本性質(zhì),并利用性質(zhì)解題.平行四邊形的基本性質(zhì):①平行四邊形兩組對(duì)邊分別平行;②平行四邊形的兩組對(duì)邊分別相等;③平行四邊形的兩組對(duì)角分別相等;④平行四邊形的對(duì)角線互相平分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=
29
,AC=4,BD=10.
問(wèn):(1)AC與BD有什么位置關(guān)系?說(shuō)明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點(diǎn)E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長(zhǎng)線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說(shuō)明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長(zhǎng)線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時(shí),求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點(diǎn)O,連接CE,則△CBE的周長(zhǎng)是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊(cè)答案