【題目】某同學(xué)在一次課外活動中,用硬紙片做了兩個直角三角形,見圖①、②.在圖①中,∠B=90°,∠A=30°;圖②中,∠D=90°,∠F=45°.圖③是該同學(xué)所做的一個實驗:他將△DEF的直角邊DE與△ABC的斜邊AC重合在一起,并將△DEF沿AC方向移動.在移動過程中,D、E兩點始終在AC邊上(移動開始時點D與點A重合).
(1)在△DEF沿AC方向移動的過程中,該同學(xué)發(fā)現(xiàn):F、C兩點間的距離逐漸 ;連接FC,∠FCE的度數(shù)逐漸 .(填“不變”、“變大”或“變小”)
(2)△DEF在移動的過程中,∠FCE與∠CFE度數(shù)之和是否為定值,請加以說明;
(3)能否將△DEF移動至某位置,使F、C的連線與AB平行?若能,求出∠CFE的度數(shù);若不能,請說明理由.
【答案】(1)變小,變大;(2)定值,∠FCE+∠CFE=∠FED=45°;(3)能,∠CFE=15°.
【解析】
試題(1)根據(jù)圖形的變化得出F、C兩點間的距離變化和,∠FCE的度數(shù)變化規(guī)律;
(2)由外角的性質(zhì)得出∠FEC+∠CFE=∠FED=45°,即可得出答案;
(3)要使FC∥AB,則需∠FCE=∠A=30°,進而得出∠CFE的度數(shù).
試題解析;(1)F、C兩點間的距離逐漸變;連接FC,∠FCE的度數(shù)逐漸變大;故答案為:變小,變大;
(2)∠FCE與∠CFE度數(shù)之和為定值;理由如下:
∵∠D=90°,∠DFE=45°,又∵∠D+∠DFE+∠FED=180°,∴∠FED=45°,∵∠FED是△FEC的外角,∴∠FEC+∠CFE=∠FED=45°,即∠FCE與∠CFE度數(shù)之和為定值;
(3)要使FC∥AB,則需∠FCE=∠A=30°,又∵∠CFE+∠FCE=45°,∴∠CFE=45°﹣30°=15°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“轉(zhuǎn)化”是數(shù)學(xué)中的一種重要思想,即把陌生的問題轉(zhuǎn)化成熟悉的問題,把復(fù)雜的問題轉(zhuǎn)化成簡單的問題,把抽象的問題轉(zhuǎn)化為具體的問題.
(1)請你根據(jù)已經(jīng)學(xué)過的知識求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數(shù);
(2)若對圖(1)中星形截去一個角,如圖(2),請你求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);
(3)若再對圖(2)中的角進一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數(shù)嗎?只要寫出結(jié)論,不需要寫出解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺進價分別為200元,170元的A,B兩種型號的電風(fēng)扇,表中是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1800元 |
第二周 | 4臺 | 10臺 | 3100元 |
(進價、售價均保持不變,利潤=銷售收入-進貨成本)
(1)求A,B兩種型號的電風(fēng)扇的銷售單價.
(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,則A種型號的電風(fēng)扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列情境①④分別可以用哪幅圖來近似地刻畫?正確的順序是( )
①一杯越來越?jīng)龅乃?/span>(水溫與時間的關(guān)系);②一面冉冉升起的旗子(高度與時間的關(guān)系);③足球守門員大腳開出去的球(高度與時間的關(guān)系);④勻速行駛的汽車(速度與時間的關(guān)系).
A. cdabB. acbdC. dabcD. cbad
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周老師為鍛煉身體一直堅持步行上下班。已知學(xué)校到周老師家總路程為2000米,一天,周老師下班后,以45米/分的速度從學(xué)校往家走,走到離學(xué)校900米時,正好遇到一個朋友,停下又聊了20分鐘,之后以110米/分的速度走回了家.周老師回家過程中,離家的路程S(米)與所用時間t(分)之間的關(guān)系如圖所示.
(1)求a的值;
(2)b= ,c= .
(3)求周老師從學(xué)校到家的平均速度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC外側(cè)作直線AP,點B關(guān)于直線AP的對稱點為D,連結(jié)BD,CD,其中CD交直線AP與點E.
(1)如圖1,若∠PAB=30°,則∠ACE= ;
(2)如圖2,若60°<∠PAB<120°,請補全圖形,判斷由線段AB,CE,ED可以構(gòu)成一個含有多少度角的三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
甲列車從A地開往B地,每小時行駛60千米,乙列車同時從B地開往A地,每小時行駛90千米.已知A,B兩地相距200km.
(1)經(jīng)過多長時間兩車相遇;
(2)兩車相遇的地方離A地多遠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某人到島上去探寶,從A處登陸后先往東走4 km,又往北走1.5 km,遇到障礙后又往西走2 km,再折回向北走到4.5 km處往東一拐,僅走0.5 km就找到寶藏.問登陸點A與寶藏埋藏點B之間的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,則DE的長為( )
A.6
B.8
C.10
D.12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com