【題目】如圖,在矩形ABCD中,EF分別是邊AB,CD上的點(diǎn),AE=CF,連接EFBF,EF與對(duì)角線AC交于點(diǎn)O,且BE=BF,∠BEF=2BAC,FC=2,則AB的長(zhǎng)為_________

【答案】6

【解析】

先證明△AOE≌△COF,RtBFORtBFC,再證明△OBC、△BEF是等邊三角形即可求出答案.

如圖,連接BO,

四邊形ABCD是矩形,

∴DC∥AB∠DCB=90°

∴∠FCO=∠EAO

在△AOE與△COF中,

∴△AOE≌△COF

∴OE=OF,OA=OC

∵BF=BE

∴BO⊥EF,∠BOF=90°

∵∠BEF=2∠BAC=∠CAB+∠AOE

∴∠EAO=∠EOA,

∴EA=EO=OF=FC=2

RtBFORtBFC

RtBFORtBFC

∴BO=BC

RtABC中,∵AO=OC,

∴BO=AO=OC=BC

∴△BOC是等邊三角形

∴∠BCO=60°,∠BAC=30°

∴∠FEB=2∠CAB=60°

∵BE=BF

∴EB=EF=4

∴AB=AE+EB=2+4=6,

故答案為6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若的三條角平分線、、交于點(diǎn),則與互余的角是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)OAC的中點(diǎn),AC2AB,延長(zhǎng)ABG,使BGAB,連接GOBCE,延長(zhǎng)GOADF,連接AE

求證:(1ABC≌△AOG

2)猜測(cè)四邊形AECF的形狀并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c,如表給出了y與x的部分對(duì)應(yīng)值:

x

﹣1

0

1

2

3

y=ax2+bx+c

n

3

0

﹣5

﹣12

(1)根據(jù)表格中的數(shù)據(jù),試確定二次函數(shù)的解析式和n的值;

(2)拋物線y=ax2+bx+c與直線y=2x+m沒有交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC和ADE中,AB=AC,∠BAC=120°,∠ADE=90°,∠DAE=60°,F(xiàn)為BC中點(diǎn),連接BE、DF,G、H分別為BE,DF的中點(diǎn),連接GH.

(1)如圖1,若D在ABC的邊AB上時(shí),請(qǐng)直接寫出線段GH與HF的位置關(guān)系   ,=   

(2)如圖2,將圖1中的ADE繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)至圖2所示位置,其它條件不變,(1)中結(jié)論是否改變?請(qǐng)說明理由;

(3)如圖3,將圖1中的ADE繞A點(diǎn)順時(shí)針旋轉(zhuǎn)至圖3所示位置,若C、D、E三點(diǎn)共線,且AE=2,AC=,請(qǐng)直接寫出線段BE的長(zhǎng)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板按如圖所示的方式擺放,AD是等腰直角三角板ABC斜邊BC上的高,另一塊三角板DMN的直角頂點(diǎn)與點(diǎn)D重合,DMDN分別交AB、AC于點(diǎn)E、F

1)請(qǐng)判別DEF的形狀.并證明你的結(jié)論;

2)若BC4,求四邊形AEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】收發(fā)微信紅包已成為各類人群進(jìn)行交流聯(lián)系,增強(qiáng)感情的一部分,下面是甜甜和她的雙胞胎妹妹在六一兒童節(jié)期間的對(duì)話.

請(qǐng)問:(12015年到2017年甜甜和她妹妹在六一收到紅包的年增長(zhǎng)率是多少?

22017年六一甜甜和她妹妹各收到了多少錢的微信紅包?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廣安市某樓盤準(zhǔn)備以每平方米6000元的均價(jià)對(duì)外銷售,由于國(guó)務(wù)院有關(guān)房地產(chǎn)的新政策出臺(tái)后,購(gòu)房者持幣觀望,房地產(chǎn)開發(fā)商為了加快資金周轉(zhuǎn),對(duì)價(jià)格經(jīng)過兩次下調(diào)后,決定以每平方米4860元的均價(jià)開盤銷售.

1)求平均每次下調(diào)的百分率.

2)某人準(zhǔn)備以開盤價(jià)均價(jià)購(gòu)買一套100平方米的住房,開發(fā)商給予以下兩種優(yōu)惠方案以供選擇:9.8折銷售;不打折,一次性送裝修費(fèi)每平方米80元,試問哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式或不等式組

1)解不等式,并把解集在數(shù)軸上表示出來.

2)解不等式組

3)解不等式組并寫出它的整數(shù)解.

查看答案和解析>>

同步練習(xí)冊(cè)答案