(2012•建陽(yáng)市模擬)如圖,在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為
5
的等腰直角三角尺ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(-3,1),點(diǎn)B在拋物線y=ax2+ax-2上.
(1)點(diǎn)A的坐標(biāo)為
(0,2)
(0,2)
;拋物線的關(guān)系式為
y=
1
2
x2+
1
2
x-2
y=
1
2
x2+
1
2
x-2
;
(2)設(shè)(1)中拋物線的頂點(diǎn)為D,求△DBC的面積;
(3)將三角尺ABC繞頂點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°,到達(dá)△AB′C′的位置.請(qǐng)判斷點(diǎn)B′、C′是否在(1)中的拋物線上,并說(shuō)明理由.
【提示:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是x=-
b
2a
,頂點(diǎn)坐標(biāo)是(-
b
2a
,
4ac-b2
4a
)].
分析:(1)求A點(diǎn)的坐標(biāo)就是求OA的長(zhǎng),可在直角三角形OAC中,根據(jù)AC=
5
,OC=1來(lái)求出OA的長(zhǎng),即可得出A的坐標(biāo).如果過(guò)B作x軸的垂線,假設(shè)垂足為F,那么△ACO≌△CBH,OA=CF,BF=OC,由此可求出B的坐標(biāo);將已經(jīng)求出的A,B的坐標(biāo)代入拋物線的解析式中即可求出拋物線的解析式;
(2)根據(jù)(1)的函數(shù)關(guān)系式即可求出D點(diǎn)的坐標(biāo).求△DBC的面積時(shí),可將△DBC分成△CBE和△DCE兩部分(假設(shè)BD交x軸于E).可先根據(jù)B,D的坐標(biāo)求出BD所在直線的解析式,進(jìn)而求出E點(diǎn)的坐標(biāo),那么可求出CE的長(zhǎng),然后以B,D兩點(diǎn)的縱坐標(biāo)的絕對(duì)值分別作為△BCE和△DCE的高,即可求出△DBC的面積;
(3)本題的關(guān)鍵是求出B′,C′兩點(diǎn)的坐標(biāo).過(guò)點(diǎn)B′作B′M⊥y軸于點(diǎn)M,過(guò)點(diǎn)B作BN⊥y軸于點(diǎn)N,過(guò)點(diǎn)C″作C″P⊥y軸于點(diǎn)P.然后仿照(1)中求坐標(biāo)時(shí)的方法,通過(guò)證Rt△AB′M≌Rt△BAN來(lái)得出B′的坐標(biāo).同理可得出C′的坐標(biāo).然后將兩點(diǎn)的坐標(biāo)分別代入拋物線的解析式中,進(jìn)而可判斷出兩點(diǎn)是否在拋物線上.
解答:解:由題意得
(1)∵AC=,CO=1,
∴AO=
(
5
)2-12
=2,
∴A(0,2),
做BF⊥OC,
∵BC=AC,∠AOC=∠BFC,
∠CAO=∠BCF,
∴△BFC≌△COA,
∴CF=AO=2,
∴B(-3,1)
將B(-3,1)代入y=ax2+ax-2得:
1=9a-3a-2,
∴a=
1
2

∴y=
1
2
x2+
1
2
x-2.

(2)如圖1,可求得拋物線的頂點(diǎn)(-
1
2
,
17
8
).
設(shè)直線BD的關(guān)系式為y=kx+b,將點(diǎn)B、D的坐標(biāo)代入,
求得k=-
5
4
,b=-
11
4
,
∴BD的關(guān)系式為y=-
5
4
x-
11
4

設(shè)直線BD和x軸交點(diǎn)為E,則點(diǎn)E(
11
5
,0),CE=
6
5

∴△DBC的面積為SCBE+SCED=
1
2
×
6
5
×1+
1
2
×
6
5
×
17
8
,
=
15
8


(3)如圖2,過(guò)點(diǎn)B′作B′M⊥y軸于點(diǎn)M,過(guò)點(diǎn)B作BN⊥y軸于點(diǎn)N,
過(guò)點(diǎn)C″作C″P⊥y軸于點(diǎn)P.(8分)
在Rt△AB′M與Rt△BAN中,
∵AB=AB′,∠AB′M=∠BAN=90°-∠B′AM-∠AMB'-∠ANB,
∴Rt△AB′M≌Rt△BAN.
∴B′M=AN=1,AM=BN=3,
∴B′(1,-1).
同理△AC′P≌△CAO,C′P=OA=2,AP=OC=1,可得點(diǎn)C′(2,1);
將點(diǎn)B′、C′的坐標(biāo)代入y=
1
2
x2+
1
2
x-2,可知點(diǎn)B′、C′在拋物線上.
(事實(shí)上,點(diǎn)P與點(diǎn)N重合)
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求二次函數(shù)解析式、三角形全等、圖形旋轉(zhuǎn)變換等重要知識(shí)點(diǎn);綜合性強(qiáng),考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•建陽(yáng)市模擬)如圖,四個(gè)電子寵物排座位:一開始,小鼠、小猴、小兔、小貓分別坐在1、2、3、4號(hào)的座位上,以后它們不停地交換位置,第一次上下兩排交換位置,第二次是在第一次交換位置后,再左右兩列交換位置,第三次是在第二次交換位置后,再上下兩排交換位置,第四次是在第三次交換位置后,再左右兩列交換位置,…,這樣一直繼續(xù)交換位置,第2012次交換位置后,小鼠所在的座號(hào)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•建陽(yáng)市模擬)(1)計(jì)算:(
1
3
-2-2sin45°+(π-3.14)0+
1
2
8

(2)化簡(jiǎn):(x+1)2+x(x-2),其中x=
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•建陽(yáng)市模擬)解分式方程:
6
x-1
-
3
1-x
=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•建陽(yáng)市模擬)小劉同學(xué)在課外活動(dòng)中觀察吊車的工作過(guò)程,繪制了如圖所示的平面圖形.已知吊車吊臂的支點(diǎn)O距離地面的高度OO′=2米.當(dāng)?shù)醣垌敹擞葾點(diǎn)抬升至A′點(diǎn)(吊臂長(zhǎng)度不變)時(shí),地面B處的重物(大小忽略不計(jì))被吊到B′處,緊繃著的吊繩A′B′=AB.AB垂直地面O′B于點(diǎn)B,A′B′垂直地面O′B于點(diǎn)C,吊臂長(zhǎng)度OA′=OA=10米,且cosA=
3
5
,sinA′=
1
2

(1)求此重物在水平方向移動(dòng)的距離BC;
(2)求此重物在豎直方向移動(dòng)的距離B′C(精確到0.1米)

查看答案和解析>>

同步練習(xí)冊(cè)答案