如圖,直角△ABC中,∠B=90°,∠BAC=78°,過(guò)C作CF∥AB,連接AF與BC相交于G,若GF=2AC,則∠BAG的大小是________度.

26
分析:取FG的中點(diǎn)E,連接EC,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得EC=AC,從而可推出∠EAC=∠AEC=∠F+ECF=2∠F,已知,∠BAC=78°,則不難求得∠BAG的度數(shù).
解答:解:如圖,取FG的中點(diǎn)E,連接EC.
∵FC∥AB,
∴∠GCF=90°,
∴EC=FG=AC,
∴∠EAC=∠AEC=∠F+ECF=2∠F,
設(shè)∠BAG=x,則∠F=x,
∵∠BAC=78°,
∴x+2x=78°,
∴x=26°,
∴∠BAG=26°,
故答案為:26.
點(diǎn)評(píng):此題主要考查直角三角形斜邊上的中線的性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、如圖,直角△ABC中,∠ABC=90°,∠A=31°,△ABC繞點(diǎn)B旋轉(zhuǎn)至△A′BC′的位置,時(shí)C點(diǎn)恰落在A′C′上,且A′B與AC交于D點(diǎn),那么∠BDC=
93°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直角△ABC中,∠C=90°,∠BAC=2∠B,AD平分∠BAC,CD:BD=1:2,BC=2.7厘米,則點(diǎn)D到AB的距離DE=
 
厘米,AD=
 
厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖在直角△ABC中,∠C=90°,AE•AC=AD•AB.
求證:ED⊥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•本溪)如圖在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB邊的垂直平分線,垂足為D,交邊BC于點(diǎn)E,連接AE,則△ACE的周長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角△ABC中,AC⊥AB,∠B=30°.在平面內(nèi),將△ABC繞直角頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△AB′C′的位置,點(diǎn)C剛好落在B′C′上,則∠BAB′等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案